

This project has received funding from
the European Union’s Horizon 2020
research and innovation programme
under grant agreement No 957047.

H2020-LC-SC3-EE-2020-1/LC-SC3-B4E-6-2020

Big data for buildings

Building Information aGGregation, harmonization and analytics platform

Project Nº 957047

D2.2 - Initial technical specifications and preliminary
design of BIGG Architecture building blocks

 Responsible: CSTB

 Document Reference: D2.1

 Dissemination Level: Public

 Version: 1.0

 Date: 01/12/2021

Ref. Ares(2021)7513575 - 06/12/2021

D2.2 - Initial technical specifications and preliminary design of
BIGG Architecture building blocks

01/12/2021

 2

Contributors Table

DOCUMENT
SECTION

AUTHOR(S) CONTRIBUTOR(S) to
results

REVIEWER(S)

Section I, V Eric Pascual, Nicolas
Pastorelly, Alan Redmond,
Bruno Fies (CSTB)

N.A. María Pérez
(Inetum BE)

Oriol Escursell
(ICAEN)

Section II Eric Pascual, Nicolas
Pastorelly, Alan Redmond,
Bruno Fies (CSTB)

Mario De Marco, Adelfio
D’Angiò, Pasquale La
Pietra (Intuicy)

Nico Vermeir, María Pérez,
Théa Gutmacher, Jarne
Kerkaert (Inetum BE)

María Pérez
(Inetum BE)

Oriol Escursell
(ICAEN)

Section III Eric Pascual, Nicolas
Pastorelly, Alan Redmond,
Bruno Fies (CSTB)

Mario De Marco, Adelfio
D’Angiò, Pasquale La
Pietra (Intuicy)

Stoyan Danov, Eloi
Gabaldon (CIMNE)

Nico Vermeir, María Pérez,
Théa Gutmacher, Jarne
Kerkaert (Inetum BE)

Pierre Lehanneur, Riccardo
De Vivo, Frederic Wauters
(Helexia/Energis)

María Pérez
(Inetum BE)

Oriol Escursell
(ICAEN)

Section IV

Pierre Lehanneur,
Riccardo De Vivo, Frederic
Wauters (Helexia/Energis)

Mario De Marco, Adelfio
D’Angiò, Pasquale La
Pietra (Intuicy)

Stoyan Danov , Eloi
Gabaldon (CIMNE)

Stratos Keranidis,
Polychronis Symeonidis
(domX)

Eric Pascual, Nicolas
Pastorelly, Alan Redmond,
Bruno Fies (CSTB)

María Pérez
(Inetum BE)

Oriol Escursell
(ICAEN)

D2.2 - Initial technical specifications and preliminary design of
BIGG Architecture building blocks

01/12/2021

 3

Table of Contents

I. INTRODUCTION ... 7

II. TECHNICAL APPROACH ... 8

II.1. Vision... 9

II.2. Distribution mechanism .. 11

II.3. General guidelines for components ... 11

II.3.1. CLI integration guidelines ... 11

II.3.2. Web service integration guidelines ... 12

II.3.3. Event stream messaging system (Kafka) integration guidelines .. 12

II.4. BIGG components versatile integration options .. 18

III. RAF – REFERENCE ARCHITECTURE FRAMEWORK 21

III.1. Big data key concepts .. 21

III.1.1. Definition .. 21

III.1.2. Layers .. 22

III.1.3. Lambda and Kappa Architecture ... 24

III.2. RAF overview .. 25

III.2.1. Message Broker ... 25

III.2.2. RAF description .. 26

III.3. Components .. 31

III.3.1. Ingestor Components ... 31

III.3.2. Harmonization components ... 35

III.3.3. Data processing/analysis components .. 41

III.3.4. Output layer components ... 47

III.3.5. Integration Layer Components ... 49

IV. MAPPING OF FRAMEWORK COMPONENTS WITH BUSINESS CASES
TECHNICAL ARCHITECTURES ... 55

IV.1. Role of the BIGG KPI dashboard .. 55

IV.2. Business cases #1, #2 and #3 - Case Study Area: Catalonia (Spain) 56

IV.3. Business cases #4 and #5 - Case Study Area: Athens (Greece) ... 58

IV.4. Business case #6 - Case Study Area: Several cities (Greece) ... 63

V. CONCLUSIONS .. 67

D2.2 - Initial technical specifications and preliminary design of
BIGG Architecture building blocks

01/12/2021

 4

Table of Figures

Figure 1) BIGG components flavours, distribution mechanisms and deployment 10

Figure 2) Kafka ecosystem ... 13

Figure 3) Kafka partitioning ... 14

Figure 4) Kafka offsets management .. 14

Figure 5) Kafka consumer groups ... 15

Figure 6) Kafka rebalancing policy .. 15

Figure 7) Example of a custom BIGG components integration solution 19

Figure 8) Big Data 5 Vs ... 21

Figure 9) Big Data architecture layers ... 23

Figure 10) Big Data Lambda architecture .. 24

Figure 11) Big Data Kappa architecture .. 25

Figure 12) 3 fundamental service archetypes for a Big Data architecture 26

Figure 13) Overview of BIGG reference architecture ... 28

Figure 14) Ingestor artefact ... 32

Figure 15) V1 version of the architecture of the ingestion/harmonization process 36

Figure 16) V2 version of the architecture of the ingestion/harmonization process 38

Figure 17) Harmoniser artefact ... 39

Figure 18) Main components of a BIGG harmoniser ... 40

Figure 19) Output layer consumer components positioning in the RAF architecture 48

Figure 20) API gateway component .. 49

Figure 21) API gateway component technical implementation .. 50

Figure 22) Commander component .. 52

Figure 23) Example of a choreographed flow in the BIGG RAF 53

Figure 24) Example of an orchestrated flow in the BIGG RAF .. 54

Figure 25) BIGG PKI dashboard user interface prefiguration .. 55

Figure 26) Business cases #1, #2 and #3 envisioned technical implementation 57

Figure 27) Business cases #4 and #5 envisioned technical implementation V1 59

Figure 28) Business cases #4 and #5 envisioned technical implementation V2 60

Figure 29) Business cases #6 envisioned technical implementation 65

D2.2 - Initial technical specifications and preliminary design of
BIGG Architecture building blocks

01/12/2021

 5

Table of Acronyms and Definitions

Acronym Definition

AHU Air Handling Unit

AI Artificial Intelligence

API Application Programming Interface

BDHF BIGG Harmonized Format (BHF)

BMS buildings management systems (BMS)

BPMN BPMN is the chosen notation to represent the UCs. Business Process
Model and Notation (BPMN) is the standard for business process
modelling. It is provided by the Object Management Group (OMG).

CLI Command Line Interface (aka “terminal”)

CMMS Computerized maintenance management systems

DEEP De-Risking Energy Efficiency Platform

DHW Domestic Hot Water

DR Demand Response (DR)

DSF Demand Side Flexibility

ECM Energy Conservation Measure

ES ECMS Energy Conservation Measures (ECMs)

EEM Energy efficiency measures (EEM)

EFFIG Energy Efficiency Financial Institution Group

EPC Energy Performance Certificate .

EPCo Energy Performance Contract

ESCO Energy Service Company

EUBSO EU Building Stock Observatory (EUBSO) and national/regional Energy
Performance Certification (EPC)

HVAC Heating Ventilation and Air Conditioning

INSPIRE The INSPIRE Directive, establishing an infrastructure for spatial
information in Europe to support Community environmental policies, and
policies or activities which may have an impact on the environment
entered into force in May 2007.

INSPIRE is based on the infrastructures for spatial information
established and operated by the Member States of the European Union.
The Directive addresses 34 spatial data themes needed for
environmental applications. See https://inspire.ec.europa.eu/

Process A process is a logical grouping of operations manipulating data : retrieval,
publication, transformation, derived data extraction,…
Processes can be defined in a hierarchical way, for instance to provide a
higher level view of a group of more elementary actions.

D2.2 - Initial technical specifications and preliminary design of
BIGG Architecture building blocks

01/12/2021

 6

RAF Reference Architecture Framework

RES Renewable Energy Source

Service Services are processes (whatever is their level) that are mainly intended
to be available outside BIGG and are used by external applications
consuming them to implement their own actions.
Note that nothing forbids some of the BIGG own processes to consume
such services.

UC Use Case. In this document, the various use cases mentioned are taken
from the D6.1 and detailed according to a chosen formalism.

D2.2 - Initial technical specifications and preliminary design of
BIGG Architecture building blocks

01/12/2021

 7

I. INTRODUCTION

The BIGG project aims at demonstrating the application of big data technologies and data
analytic techniques for the complete buildings life-cycle of more than 4000 buildings in 6 large-
scale pilot test beds. The proposed solutions will be deployed and tested cross pilot and
country validation of at least two business scenarios in Spain and Greece.

The BIGG project will achieved its targets by: 1) The Open Source BIGG Data Reference
Architecture 4 Buildings for collection/funnelling, processing and exchanging data from
different sources (smart meters, sensors, BMS, existing data sets); 2) An interoperable
buildings data specification, BIGG Standard Data Model 4 Buildings, based on the
combination of elements from existing frameworks and EC directives, such as SAREF,
INSPIRE, BIM, EPCHub that will be enhanced to reach full interoperability of building dates;
3) An extensible, open, cloud-compatible BIGG Data Analytics Toolbox of service modules for
batch and real-time analytics that supports a wide range of services, new business models
and support reliable and effective policy-making.

The goal of this document is to present the initial technical specifications and preliminary
design of BIGG Architecture building blocks.

This is one of the main deliverables of the WP2. It presents the overall description of the
elementary BIGG components and it describes the architectural possibilities to use and
organize these components. They are software units with well-defined purposes like for
instance retrieving data, transforming data, analysing data or coordinating data flows.

One of the key findings of BIGG is that, in order to fulfil all requirements from pilots, the BIGG
architecture shall not be exclusively a cloud-based system. The proposed solution must be
modular and flexible in terms of BIGG components deployment choices. Actuality, BIGG
components must be deployable locally on partners infrastructures where BIGG components
can be close to the place where data-to-be-exploited resides. Therefore, the BIGG technical
specifications are a “pick and choose” system describing components that end-users may take
and unitary deploy and some architectural guidelines proposed to present state-of-the-art
ways to organize these components’ interactions.

The document is organized in the following manner:

▪ the first section presents the technical approach to ensure modularity and versatility of
BIGG software components

▪ The second section presents the Reference Architecture Framework (RAF) describing
state-of-the-art techniques to coordinate BIGG components, may the actual architecture
deployment be local (on client’s infrastructures) or in the cloud (on centralized shared
infrastructures). In this chapter different categories of BIGG components are introduced
that manage matters like ingesting data, harmonizing data, analysing and improving data,
exposing data to external systems, or organizing BIGG pipelines.

▪ The last section will describe the planned instantiation of the BIGG reference architecture
for the different BIGG business cases. This chapter will explain which BIGG components
will be used by each partner for the first version of the platform implementation.

D2.2 - Initial technical specifications and preliminary design of
BIGG Architecture building blocks

01/12/2021

 8

II. TECHNICAL APPROACH

This chapter defines the overall BIGG technical architecture choices made regardless of the
BIGG components specific internal logics.

These technical choices are the result of a preliminary comparative analysis of practical
options based on the former experience and the technical background of the involved partners.
The analysis has been driven by several concerns:

▪ To be able to deliver BIGG framework composed of reusable components in a form that
makes their deployment as versatile as possible on the various envisioned IT
environments,

▪ To allow diverse ways of integrating BIGG components, based on what has been
observed as current working methods and planned usages.

Three distinct ways of using software components to be delivered by BIGG project have been
identified while analysing the current practices of the partners with respect to data collection
and analysis:

1. BIGG components can be used from the CLI. This exposition method is quite a
common technique for chaining tools to assemble data processing pipelines where
tools’ inputs and outputs are inter-connected by the means of data files exchanges

2. BIGG components can be used as online services by providing a webservice
API. This is a widespread practice when the involved processes require heavy
computational resources, not available on the end-users’ information systems.

3. BIGG components can be used via event stream messaging or message queuing
systems. This is the best suited solution to create a BIG DATA architecture able to
process live events when required.

This means that components should be distributed in 3 flavours:

- A CLI stand-alone tool consuming and/or producing data files and configured by
options

- A Web service exposing a REST (Representational State Transfer) API

- An event stream messaging system compatible node: In the context of big data
management use cases, event stream messaging systems are more relevant to be
used than message queuing (MQ) systems. In the BIGG project, Kafka event stream
messaging system will be used for the Reference Architecture Framework. Compatible
components must thus be publishers (aka “producers”) and/or subscribers (aka
“consumers”) able to connect to the Kafka message bus.

It must be noted that these 3 forms are agnostic with respect to the programming language
used to develop the end-user applications or services leveraging the BIGG framework
components.

D2.2 - Initial technical specifications and preliminary design of
BIGG Architecture building blocks

01/12/2021

 9

II.1. Vision

A problem encountered frequently when deploying software in an existing environment is its
compatibility with the host OS (Operating System) and with the installed services and software
libraries. For instance, an application can require a dependency which is already installed on
the target system, but with a version not compatible with what is expected. Trying to install it
without updating the dependency will result in a non-working application. Trying to update the
dependency has big chances to break other parts of the system. This is known as the
“dependency hell” in the software development community.

The easiest way to solve this problem is to use the containerization technology popularized
by Docker1. In a few words, this is a form or virtualization, but without the overhead of stacking
a guest OS over the host OS. The containers provide an isolated environment in which
applications are packaged with their own dependencies and executed without interacting with
conflicting ones that might be present on the host system already.

The technical artefact at the heart of Docker based deployments is the image. It is a kind of
disk snapshot containing the code to be executed in a container.

It must be noted that such images can package long running code such as a server as well as
single shot code such as a tool processing a data file. Container technology is thus equally
suited for the 3 flavours of distribution presented above.

One option for supporting the concept of "component flavour" introduced earlier is to package
the business logic of the process as a shared library which entry-points are called from the
code wrapping it either as a CLI tool, as a Web service or an event messaging compatible
component.

NB: This is not mandatory to code all versions of the wrapped components: involved
development teams are free to choose the best technical implementations that suit the pilots’
requirements and constraints.

1 https://www.docker.com/

D2.2 - Initial technical specifications and preliminary design of
BIGG Architecture building blocks

01/12/2021

 10

Figure 1) BIGG components flavours, distribution mechanisms and deployment

The figure above summarizes technical solutions to manage and share BIGG components
among consortium partners:

1. For every business subject handled by BIGG (ex: ingesting data, harmonizing data,
analysing and improving data etc. see §III.3.), business logic software codes must be
created. These business logic codes hold the added value mechanisms and features that
have been created by BIGG developers regarding the business matters. These “low level”
codes must be shared among consortium's developers so that the code can be commonly
improved, reviewed and updated in a future. These business codes usually use dedicated
technologies and frameworks or libraries (ex: Python + Pandas, R + ggplot2) to offer a
software solution to a business matter.

2. Then business logic code can be wrapped in different interface-implementation options
depending on the possible targeted deployments. The three options are to get business
code accessible through CLI APIs, a web service REST API, and/or an event message
compatible interface. For the latter point, the Kafka even streaming message system has
been chosen.

3. For easiest deployments, may it be in the cloud or on local systems, the created wrapped
components must be provided as Docker images. This point is very important to ensure
that the components are packaged in such a way that their deployment will be “frictionless”
on any targeted system.

4. The different flavours of the components must be published to a BIGG images registry
where every partner will be able to retrieve the shared assets depending on their
requirements, see §II.2.

5. Depending on each business cases, components in different required flavours will be
stored in the repository. The business logic code holds the added value processes that
had been designed in the BIGG project. This code needs to be shared in the repository
too. Depending on what is required by each partner, versions of specific wrapped

D2.2 - Initial technical specifications and preliminary design of
BIGG Architecture building blocks

01/12/2021

 11

components can be created and shared, same thing for the dockerized versions of a
specific service

6. Finally, every partner implementing real-world business cases will be able to retrieve the
required versions of specific BIGG components to deploy and integrate them in specific
infrastructures using the BIGG RAF (see III.2.) or implementing a custom way to integrate
them (see II.4.).

II.2. Distribution mechanism

A straightforward way to make images produced by contributors available to potential users is
to host them on the container registry available on GitLab2 for instance. This way, the
repository used for the source control management of the component provides its deployment
source at the same time. Running an image is then achieved with the docker run command

once the local configuration has been set to include the URL to the image registry.

II.3. General guidelines for components

As introduced above, the components are expected to be available as CLI tools and/or as
Web services exposing a REST API and/or Kafka compatible components.

Common practices for passing data and returning results are expected to be followed so that
their consumers do not need to adapt to every individual choice made by the component
providers. Respecting this guideline also brings the benefit of exposing a coherent and
homogenous interface looking more industrial.

II.3.1. CLI integration guidelines

They are expected to use:

• positional arguments by default for identifying data sets (both input and output).

• options for the process configuration parameters. Sensitive defaults should be supported
for the options to simplify the command for commonly encountered use cases.

Example:

$ bigg-tool /path/to/inputfile1 /path/to/inputfile2 /path/to/ouputfile \

 --option1 foo –option2 bar

If the tool uses a single input dataset, it can be convenient to support piping from the stdin
stream, allowing the end-user to build processing chains. In this case, producing the output to
the stdout stream is expected too. Discriminating between the "file paths" and " standard

streams" use cases can be achieved by reserving the positional arguments for datasets and
use options for the rest. The decision is then based on the presence of the positional
arguments or not. Mixed cases can be supported by using the "-" (dash) in place of a file path,
but this is not mandatory.

An additional motivation for supporting standard streams is that it also brings the benefit of
parallelizing processes invoked in the chain and not using the disk storage for the intermediate

2 At the time this document is written it is not decided yet if the entire BIGG repository will be publicly
available or not. If the repository is restricted it will be at least accessible upon request.

D2.2 - Initial technical specifications and preliminary design of
BIGG Architecture building blocks

01/12/2021

 12

data if they are not to be kept. Both side-effects provide a noticeable performance boost for
the execution of the whole chain, especially when high volumes of data are involved.

If standard streams are supported, care must be taken that progression messages printed by
the process are written to stderr (and not to stdout) so that they don't end in the captured

data.

Exit codes must conform to the common practices of*nix systems, 0 meaning "successful
command" and anything else meaning that either an error occurred during the process, or the
command was invalid (missing required parameter, not existing file…)

CLI tools must provide the standard –h/--help option to display a usage notice the same way

*nix commands do. External links to detailed documentation can be included in the returned
text if relevant. They --version option should also be implemented to make consuming

processes able to check it if needed.

II.3.2. Web service integration guidelines

Since the process will use most of the time complex inputs and data sets, its execution must
be handled by a HTTP POST request which body contains the parameters encoded as
multipart/form-data3. If no data set is to be passed, the application/x-www-form-
urlencoded4 format can be used since it is more compact. In this case, it must be clearly

stated in the specification of the tool, but this is not encouraged since it adds burden on the
end-user's side and does not bring a noticeable benefit to the performance side, considering
the generally small size of the involved inputs.

When the process is expected to return a data set, it must be the content of the response body
and the Content-Type header5 of the response must be set to reflect its type. Response

custom headers can be used if additional information is to be passed. They MUST be clearly
documented in this case.

The status (success or failure) of the request must use the standard HTTP status codes,
namely 200 for a successful execution, 400 for an invalid request, 422 for a processing error
caused by the input data and parameters provided by the request. The 500-status code must
be reserved for unexpected server errors.

To make tools as self-documenting as possible, the Web service version is expected to
implement the request GET /help returning the usage information. External links to detailed

documentation can be included in the returned text if relevant. The version should also be
returned in plain text as the response to the GET /version request.

II.3.3. Event stream messaging system (Kafka) integration
guidelines

II.3.3.a. Key concepts

Kafka6 project was started at LinkedIn and become open source later on in 2011. Since then,
it has evolved and established itself as a standard tool for building real-time data pipelines.

3 https://developer.mozilla.org/en-US/docs/Web/HTTP/Methods/POST

4 https://developer.mozilla.org/en-US/docs/Web/HTTP/Methods/POST

5 https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Type

6 https://kafka.apache.org/

D2.2 - Initial technical specifications and preliminary design of
BIGG Architecture building blocks

01/12/2021

 13

The official documentation defines it as a “distributed streaming platform” and says it is similar
to enterprise messaging system. Kafka has three main components:

1. Producer

2. Broker

3. Consumer

The “producers” are client application sending some messages. The “brokers” receive these
messages from publishers and store them in the message log. The “consumers” read the
message records from the brokers and persist them, as an example, in some repository like
Cassandra, HBase, MongoDB, etc.

In the years, a set of applications was built around Kafka to compose a whole ecosystem:

Figure 2) Kafka ecosystem

So, a “cluster” is a set of brokers running in a group of computers. Kafka exposes stream
processing API used by the “processors” and, moreover, it is possible to integrate other stream
processing frameworks on top of it like Spark or Storm. The “connectors” are tools used to
import data from databases into Kafka or export data from Kafka to databases. These are not
just out of the box connectors but also a framework to build specialized connectors for any
other application. Before to start implementing the integration with Kafka, it is necessary to
clarify some key concepts of this message broker:

• Producer
The “producer” is an application sending messages to Kafka. Each message is defined
in Kafka as a “record”. A record could be a simple string or a complex object. Kafka is
completely agnostic from the record format: for it is a simple array of bytes.

• Consumer
The “consumer” application receives messages from the broker in a poll loop waiting
for them. In Kafka there is the concept of “commit” to notify the broker the messages
are received and processed correctly.

• Broker
Kafka is defined as a message broker because it acts as an intermediary between the
producers sending messages and consumers receiving them. Notably, producers and

D2.2 - Initial technical specifications and preliminary design of
BIGG Architecture building blocks

01/12/2021

 14

consumers are not directly connected: Kafka offers a loosely coupled integration
architecture.

• Cluster
Generally, a cluster is a group of computers acting together for a common purpose.
This is the same for Kafka: deployed in a distributed system, each computer is
executing one coordinated instance of the broker.

• Topic
It is an arbitrary unique name given to a data stream made of all the messages the
producers send to and the consumers subscribe to.

• Partition
A topic can contain a huge amount of data. Storing and processing such quantity of
data could be scaled dividing all the messages sent to a topic between its “partitions”.
As an example, a Kafka cluster could organize and distribute each topic partition on a
different computer. The number of topic partitions is determined by the user, Kafka is
not involved in this decision. Different configurable criteria could be used to divide
message between the partitions: range, hashing, round-robin, etc.

Figure 3) Kafka partitioning

• Offset
The “offset” is simply the sequence number Kafka attributes to each message in a
partition. This number is immutable and for the first message in a topic is zero and then
is incremented by 1 for the next message and so on. The offset is local to a partition
and is not globally indicating a message across the cluster. So, to directly identify a
message it is necessary to know: the topic name, the partition number and the offset
number. The offset allows the consumer to “commit” the exact message received,
allows Kafka handle correctly the message sequence and allows operators to shift the
current offset that Kafka is about to process to rewind the message sequence.

Figure 4) Kafka offsets management

D2.2 - Initial technical specifications and preliminary design of
BIGG Architecture building blocks

01/12/2021

 15

• Consumer Group

If the partitioning of a topic is a mechanism to assure scalability to the side of the
producers, the possibility to organize groups gives scalability to the side of the
consumers. In each group there could be instantiated more consumers to share the
workload, each component of a group consuming messages from a different set of
partitions. Usually, consumers doing the same work belong to the same consumer
group and they must be fewer than the topic partitions: the consumers in excess will
not receive any message and they will be eventually used as backup.

Figure 5) Kafka consumer groups

Moreover, Kafka adopt a rebalancing policy when the partitions are more than the consumers
in a group:

Figure 6) Kafka rebalancing policy

D2.2 - Initial technical specifications and preliminary design of
BIGG Architecture building blocks

01/12/2021

 16

II.3.3.b. CLI

In Kafka installation home directory, the “bin” folder contains some useful commands:

CREATE TOPIC

kafka-topics.sh --zookeeper localhost:2181 --create --topic <topic name> --

partitions 1 --replication-factor 1 --config <configuration>

DESCRIBE TOPIC

kafka-topics.sh --zookeeper localhost:2181 --describe --topic <topic name>

DELETE TOPIC

kafka-topics.sh --zookeeper localhost:2181 --delete --topic <topic name>

LIST ALL TOPICS

kafka-topics.sh --zookeeper localhost:2181 --list

FOLLOW TOPIC ON THE CONSOLE

kafka-console-consumer.sh --bootstrap-server localhost:9092 --topic <topic

name> --from-beginning

DESCRIBE CONSUMER GROUP

kafka-consumer-groups.sh --bootstrap-server localhost:9092 --describe --

group <consumer group name>

SET THE OFFSET TO A CONSUMER GROUP

kafka-consumer-groups.sh --bootstrap-server localhost:9092 --group <consumer

group name> --topic <topic name>:<partition> --execute --reset-offsets --to-

offset 1636

kafka-consumer-groups.sh --bootstrap-server localhost:9092 --group <consumer

group name> --topic <topic name>:<partition> --execute --reset-offsets --to-

latest

II.3.3.c. CODE

The examples included in this section use Java language. Kafka clients are available for a
large panel of programming languages. For instance, Python users can head to kafka-

python7, that is among the most popular ones.

II.3.3.c.1. Producer

A “producer” could be implemented with very few lines of code:

// istantiate a producer

7 documentation: https://kafka-python.readthedocs.io/en/master/

D2.2 - Initial technical specifications and preliminary design of
BIGG Architecture building blocks

01/12/2021

 17

KafkaProducer<String, Object> producer = new KafkaProducer<String,

Object>(<producerPropertiers>);

// instantiate a record

ProducerRecord<String, Object> record = new ProducerRecord<String, Object>(topic,

partition, timestamp, key, data, headers);

// send a record optionally with a callback

producer.send(record, <optional callback>);

II.3.3.c.2. Consumer

A “consumer” must implement a poll loop in a thread to keep waiting for batch of records
coming from the broker, a possible pseudo-code implementation could be:

// define consumer

KafkaConsumer<String, byte[]> consumer = new KafkaConsumer<>(consumerProperties);

// map of offset to be committed to the broker (to empty on each poll)

Map<TopicPartition, OffsetAndMetadata> toCommitMap = Maps.newHashMap();

// subscribe to list of topics or a pattern

consumer.subscribe(topics);

[...]

<poll loop>

ConsumerRecords<String, byte[]> records = consumer.poll(pollTimeout);

// record loop

for (TopicPartition partition : records.partitions()) {

List<ConsumerRecord<String, byte[]>> partitionRecords = records.records(partition);

for (ConsumerRecord<String, byte[]> record : partitionRecords) {

// consume record

[...]

// prepare for commit up to this record

long lastOffset = partitionRecords.get(partitionRecords.size() - 1).offset();

toCommitMap.put(partition, new OffsetAndMetadata(record.offset() + 1));

// commit map

consumer.commitSync(toCommitMap);

[...]

D2.2 - Initial technical specifications and preliminary design of
BIGG Architecture building blocks

01/12/2021

 18

II.4. BIGG components versatile integration options

The 3 BIGG components distribution mechanisms proposed in previous chapters imply
different technical options to provide input and output data to these components. The following
table presents the different input and output possibilities depending on the chosen distribution
system as soon as the components are dockerized:

INPUTS OUTPUTS #

CLI (Via environment variables)
Shared external storing
systems reference as input

Shared external storing systems
reference as output

1

command line arguments

2

STDIN (File stream) STDOUT (File stream) 3

Mounted folder containing
input files

Mounted folder containing output files 4

Webservice Webservice API call Webservice API response 5

Event stream
messaging
system

Input messages Output messages 6

1. A dockerized component exposing a CLI interface can use environment variables to share
connection to external persistent storing systems like databases. Reference to external
storage system can then be away to share input and output data for BIGG components.

2. A dockerized component exposing a CLI interface can use command line arguments to
provide input data do BIGG components. Command line inputs contain variables
providing data to be processed by the component.

3. In computer programming, standard streams are interconnected input and output
communication channels between a computer program and its environment when it begins
execution. The three input/output (I/O) connections are called standard input (STDIN),
standard output (STDOUT) and standard error (stderr)8. A dockerized component exposing
a CLI interface can use STDIN to get input data as a stream and provide outputs to
STDOUT as a stream.

4. A dockerized component exposing a CLI can use the shared folder mounting feature of
docker to share a directory that could be used to get input files and provide output storage
for result files created by the process.

5. If a dockerized component is using a web service front end to expose services proposed
by the component, then a REST API request (via HTTP POST/GET/PUT…) can be used as
an input while the standard HTTP response can be used for the output of the service.

6. In the case where a dockerized component is using an event stream messaging system,
then the messaging protocol proposed by the event stream messaging system can be
used to provide input data to the component, the component can use the messaging

8 https://en.wikipedia.org/wiki/Standard_streams

D2.2 - Initial technical specifications and preliminary design of
BIGG Architecture building blocks

01/12/2021

 19

protocol to provide output information to the system (e.g see Kafka concepts in section
II.3.3.).

It must be said that components exposing web services or using event stream messaging
systems can be triggered through an HTTP request or a message event with parameters but
can still use a shared resource like a shared database or shared folders to deal with input and
output data when a huge amount of data is involved in the process. For instance, passing via
a HTTP request a big amount of data to be processed by a micro-serviced component may
not be a robust technical strategy.

Here there is a docker exec command describing how a BIGG component could be triggered
via a command line with options to provide input parameters to the service:

EXEC docker run -it --rm <image> <env Variables> <command_and_options> (intputs) | STDIN

With this vision of BIGG components exposing various possible technical interfaces
implementations, different integration options can be envisioned to build processing pipelines.

Here there is an example of different BIGG components integration via a custom integration
mechanism:

Figure 7) Example of a custom BIGG components integration solution

1. A custom integration mechanism is calling the first component of a pipeline using
STDIN to provide input information and variables to mount a shared folder using
Docker features. The component outputs are stored in the shared folder as files.

2. The custom integration mechanism gets result files from the shared folder and passes
the shared folder reference as input of the next component in the pipeline along with
connection parameter to a shared database. The second component is using the
shared database to store its results after processing files provided by the first
component in the shared folder.

3. The integration mechanism is triggering by? the third component and provides it a
reference to the shared database and extra variables in the CLI input. This component
is generating the result on STDOUT processing data provided as parameter and data
stored in the shared database.

4. The integration mechanism is then uses the content provided by the previous
component on STDOUT to push it as a parameter of a REST API call to trigger the
next component which will store his processing results in a shared database.

This fictious sequence is proposed to display how BIGG components expose versatile options
for adaptable pipelines integration. It demonstrates that various methods to handle input data
and output data can be implemented by diverse systems from the simplest one (ex: a simple

D2.2 - Initial technical specifications and preliminary design of
BIGG Architecture building blocks

01/12/2021

 20

script to chain several components) to the more complex one using an event stream
messaging system and the RAF described in chapter III.

For instance, some data scientists could use some of the BIGG dockerized components in
direct local integration with tools like Jupyter Notebook9 or Matlab10 via CLI calls.

9 https://jupyter.org/

10 https://www.mathworks.com

https://jupyter.org/
https://www.mathworks.com/

D2.2 - Initial technical specifications and preliminary design of
BIGG Architecture building blocks

01/12/2021

 21

III. RAF – REFERENCE ARCHITECTURE FRAMEWORK

III.1. Big data key concepts

III.1.1. Definition

Big Data is a complex set of concepts, technologies, frameworks, architectures having a single
simple objective: to manage a big amount of data. Its definition is often based on words starting
with "V"11 and, despite more and more V's are adding over time (arriving up to ten), the
standard definition counts 5 V:

Figure 8) Big Data 5 Vs

1) Volume

Big data volume defines the ‘amount’ of data that is produced. The value of data is also
dependent on the size of the data. Today data is generated from various sources in different
formats – structured and unstructured. Some of these data formats include Word and Excel
documents, PDFs and reports along with media content such as images and videos. Due to
the data explosion caused to digital and social media, data is rapidly being produced in such
large chunks, it has become challenging for enterprises to store and process it using
conventional methods of business intelligence and analytics. Enterprises must implement
modern business intelligence tools to effectively capture, store and process such
unprecedented amount of data in real-time.

2) Velocity

Velocity refers to the speed at which the data is generated, collected and analyzed. Data
continuously flows through multiple channels such as computer systems, networks, social
media, mobile phones etc. In today’s data-driven business environment, the pace at which
data grows can be best described as ‘torrential’ and ‘unprecedented’. Now, this data should

11 Laney, D. (2001), “3-D Data Management: Controlling Data Volume, Velocity and Variety”

D2.2 - Initial technical specifications and preliminary design of
BIGG Architecture building blocks

01/12/2021

 22

also be captured as close to real-time as possible, making the right data available at the right
time. The speed at which data can be accessed has a direct impact on making timely and
accurate business decisions. Even a limited amount of data that is available in real-time yields
better business results than a large volume of data that needs a long time to capture and
analyze. Several Big data technologies today allow us to capture and analyze data as it is
being generated in real-time.

3) Value

Although data is being produced in large volumes today, just collecting it is of no use. Instead,
data from which business insights are garnered add ‘value’ to the company. In the context of
big data, value amounts to how worthy the data is of positively impacting a company’s
business. This is where big data analytics come into the picture. While many companies have
invested in establishing data aggregation and storage infrastructure in their organizations, they
fail to understand that the aggregation of data doesn’t equal value addition. What you do with
the collected data is what matters. With the help of advanced data analytics, useful insights
can be derived from the collected data. These insights, in turn, are what add value to the
decision-making process. One way to ensure that the value of big data is considerable and
worth investing time and effort into, is by conducting a cost Vs benefit analysis. By calculating
the total cost of processing big data and comparing it with the ROI that the business insights
are expected to generate, companies can effectively decide whether or not big data analytics
will actually add any value to their business.

4) Veracity

The Veracity of big data or Validity, as it is more commonly known, is the assurance of quality
or credibility of the collected data. Can you trust the data that you have collected? Is this data
credible enough to glean insights from? Should we be basing our business decisions on the
insights garnered from this data? All these questions and more, are answered when the
veracity of the data is known. Since big data is vast and involves so many data sources, there
is the possibility that not all collected data will be of good quality or accurate in nature. Hence,
when processing big data sets, it is important that the validity of the data is checked before
proceeding for processing.

5) Variety

While the volume and velocity of data are important factors that add value to a business, big
data also entails processing diverse data types collected from varied data sources. Data
sources may involve external sources as well as internal business units. Generally, big data
is classified as structured, semi-structured and unstructured data. While structured data is one
whose format, length and volume are clearly defined, semi-structured data is one that may
partially conform to a specific data format. On the other hand, unstructured data is unorganized
data and doesn’t conform with the traditional data formats. Data generated via digital and
social media (images, videos, tweets, etc.) can be classified as unstructured data. The sheer
volume of data that organizations usually collect and generate may look chaotic and
unstructured. In fact, almost 80 percent of data produced globally including photos, videos,
mobile data, and social media content, is unstructured in nature.

III.1.2. Layers

In order to offer all the features promised by its 5 V’s definition, a Big Data architecture is
typically organized in layers:

D2.2 - Initial technical specifications and preliminary design of
BIGG Architecture building blocks

01/12/2021

 23

Figure 9) Big Data architecture layers

1) Data Source Layer

The very first step is to collect data both internal and external, in both modalities push and
pull, from different sources (smartphone, networking, sensor, social media, health, etc.) in
different formats (structured or unstructured). The streaming data will be fed into the
processing layer, and the accumulated historical data will be stored in the storage layer, in
order to be further analyzed with specific analytical tools in the analytical layer, based on the
demands from the application layer.

2) Data Storage Layer

In this layer all the incoming raw data will be persisted. Usually, a generic purpose NoSQL
repository is used to store agnostically the messages (Hadoop, MongoDB, etc.) following a
“schema on read” approach, in other words applying a structure to the data only in the
extraction phase. This storage is called “data lake” because all the data sources are pouring
content into it like a river in a lake. To retrieve the data stored in the data lake, its content has
to be enriched with labels and metadata.

3) Data Processing / Analysis Layer

When you want to use the data you have stored to find out something useful, you will need to
process and analyze it. This layer is responsible for acquiring data from the data lake and, if
necessary, converting it to a format that suits how the data is to be analyzed. The concept of
“lakeshore” is introduced to define a repository containing structured, mapped, organized data
derived from the raw data contained in the data lake. A lakeshore fits the data model used by
the analysis layer to feed ML modules and to extract statistics, business intelligence, AI
models, etc.

4) Data Output Layer

This is how the insights gleaned through the analysis is passed on to the people who can take
action to benefit from them. This output can take the form of reports, charts, figures and key
recommendations. Ultimately, your Big Data system’s main task is to show, at this stage of

D2.2 - Initial technical specifications and preliminary design of
BIGG Architecture building blocks

01/12/2021

 24

the process, how measurable improvement in at least one KPI that can be achieved by taking
action based on the analysis you have carried out. The consumers can be visualization
applications, human beings, business processes, or services. Real-time analysis can leverage
NoSQL stores (for example, Cassandra, MongoDB, and others) to analyze data produced by
web-facing apps.

III.1.3. Lambda and Kappa Architecture

One of the first generic Big Data reference architecture was designed by Nathan Marz. The
Lambda Architecture12 conceives the "data source layer" as a continuous stream of data that
splits into two separate flows: the "batch layer", that stores all the historical data and pre-
computes the views to be offered to the "serving layer", and the "speed layer" that stream
processes the incoming data and offers a real time view to the "data access layer". This last
has a "strabic" view on the last layers: it accesses both "serving layer" and "speed layer"
merging and collecting the best quality of data according to the different use cases:

Figure 10) Big Data Lambda architecture

An alternative generic reference architecture was successively designed by Jay Kreps. The
Kappa Architecture13 focuses only on data processing as a stream. It is not intended to replace
the Lambda architecture but rather to simplify it. The idea is to manage data processing in real
time and continuous reprocessing in a single flow processing engine. All reprocessing is done
starting from the data stream. This requires that the incoming data stream can be played again
(very quickly), either in its entirety or from a specific point. If there are any changes to the
code, a second processing of the flow proceeds to a new reproduction of all the previous data
through the last engine in real time and to the replacement of the data stored in the service

12 http://lambda-architecture.net/

13 https://www.oreilly.com/radar/questioning-the-lambda-architecture/

http://milinda.pathirage.org/kappa-architecture.com/

https://www.oreilly.com/radar/questioning-the-lambda-architecture/

D2.2 - Initial technical specifications and preliminary design of
BIGG Architecture building blocks

01/12/2021

 25

level. This architecture aims at simplification by maintaining a single code base rather than
managing one for each level, batch and speed, as in the Lambda architecture. Also, queries
need to search in one service location only, rather than accessing batch and speed views:

Figure 11) Big Data Kappa architecture

For many real-time scenarios, the Lambda architecture is perfect. The same cannot be said
for Kappa architecture. If batch and streaming analytics are at the same level, the Kappa
architecture is probably the best solution. In some cases, however, accessing a complete set
of data in a batch view can lead to a level of optimization that makes the Lambda option more
performing and perhaps even easier to implement.

There are also some extremely complex situations in which batch and streaming algorithms
produce very different results (using machine learning models, advanced systems or naturally
very expensive operations that must be performed differently in real time) that require the use
of Lambda option.

III.2. RAF overview

III.2.1. Message Broker

Whatever the generic reference architecture to be used between Lambda and Kappa, it is
certainly not possible to ignore a fundamental element present in both: the message broker.
This software module can be considered as a message-oriented middleware, an intermediary
agent that connects all the applications with each other. In a microservices architecture, the
message broker can offer a lot of features:

▪ topic-based message routing with publisher-subscriber pattern

▪ message routing to one or more microservices

▪ message queuing for batch workloads

▪ enhanced and loosely-coupled services interoperability

▪ message storage and/or buffering to guarantee delivery

▪ partitioning and load balancing

▪ event-driven choreographed architecture

In the use of this tool, 3 fundamental service archetypes can be identified:

D2.2 - Initial technical specifications and preliminary design of
BIGG Architecture building blocks

01/12/2021

 26

Figure 12) 3 fundamental service archetypes for a Big Data architecture

1. Producer

It is a service that publishes a message on a specific topic. As an example, a "producer" could
be a service collecting IoT messages and publishing them on a specific message broker topic.
Such a service is commonly indicated as "ingestor".

2. Processor

A “processor” both consumes a message from a topic and, after some computations or
transformations, produces a message on another topic. A service of this archetype could be
used to harmonize the incoming messages translating them from their original formats in a
“common language” defined by the standard BIGG models.

3. Consumer

This archetype of services consumes message from a topic (or more topics) for different
purposes: to send the message to another service, to persist the message into a repository,
to produce logging or tracing, etc. This kind of services are usually identified as “adapter”.
Consumers subscribe to messages for listening to them and processing the conveyed or
related data on the fly.

III.2.2. RAF description

III.2.2.a. Requirements

In the BIGG project, a participant could have his own IT infrastructure: edge computing
components based typically on IoT hardware like sensors, devices and meters, and a cloud
computing platform probably containing a message broker, a data lake, and one or more
lakeshores so that he could want only to use some of the analytics services offered by BIGG.
Alternatively, a participant could have none or a subset of these elements, needing a platform
that could offer all the BIGG services. Moreover, a participant (or a simple user) could have
the need to deploy the BIGG solution locally on a development PC for testing purposes, on
premise in his company or on a shared cloud platform. In some scenarios, a participant could
want to use BIGG as it is, out of the box, in another scenario, instead, he could want to modify
and customize some of its components or to completely replace them.

To meet all these scenarios and requirements, the BIGG RAF must be:

1. Big Data enabled: BIGG RAF must be a Big Data architecture offering its minimal set of
backbone services like a message broker, a data lake and at least one lakeshore.

D2.2 - Initial technical specifications and preliminary design of
BIGG Architecture building blocks

01/12/2021

 27

2. Virtual / Containerized: Virtualization is the best solution to install the BIGG platform in
whatever environment the participants want to. This can be achieved with OS level
virtualization preparing a virtual machine image to run on the proper container (VMware,
VirtualBox, etc.) or virtualizing every platform component starting from the backbone
(message broker, datalake repository, etc.) up to the single microservice (ingestor,
harmoniser, etc.) into some single process containers using, as an example, Docker.

3. Pluggable: If a participant wants to use the BIGG platform with a “black box” approach,
then this platform has to expose clearly defined and well documented input / output
services.

4. Modular / Composable: A microservices oriented architecture is, by definition, modular
and composable and could offer to the participants the possibility to modify or replace a
single component or to even reorganize the data flow and the business processes by simply
reconfiguring the sequence or the pipeline (i.e. changing input and output topics on the
message broker).

III.2.2.b. Design

The following diagram shows the BIGG reference architecture:

D2.2 - Initial technical specifications and preliminary design of
BIGG Architecture building blocks

01/12/2021

 28

Figure 13) Overview of BIGG reference architecture

D2.2 - Initial technical specifications and preliminary design of
BIGG Architecture building blocks

01/12/2021

 29

In the top there are grey boxes representing the participants IT infrastructure and in the yellow
box in the bottom is the BIGG RAF. These are its main generic components:

Ingestor

This microservice is the BIGG platform input. It is a “producer” exposing a REST API to receive
all incoming data and to put them on the message broker proper topic

Controller

The “Controller” is an “adapter/consumer” retrieving all the response data from the dedicated
message broker topic and sending them to the participant IT infrastructure. It is the output of
the BIGG platform.

Message Broker

This component will be the backbone of the whole solution interconnecting all the
microservices to enact a choreographed data pipeline. Apache Kafka could be the proper tool
to use as the message broker.

Harmoniser (see §III.3.2.b.)

Following the “producer” pattern, this microservice will read messages from the message
broker, will translate them in the standard BIGG models and will write the results on the
message broker. It will expose this translation functionality in both directions: from participant
proprietary language to common language and from common language to participant
proprietary language to make the result readable by the third-party external participant system.
As an alternative, this service could be implemented as a Hadoop map-reduce task or as a
Spark streaming job.

DL Adapter and Datalake

An “adapter/consumer” is a service consuming messages from the broker and sending them
to a third-party system, to a repository or to a different outbound. In this case the DL Adapter
is used to persist all the messages it retrieves from the broker into the datalake. It is also used
to retrieve the same messages from the datalake. It is, in other word, the interface used by
the BIGG platform to its central repository. For this kind of usage, a generic purpose repository
should fit the needs: HBase on Hadoop or MongoDB.

IM Adapter and IMDG

The speed layer is a critical component. Low latency in memory computations could be useful
for timeseries real time analysis and monitoring. The IM Adapter component will offer an
interface to an in-memory repository capable of processing up to 200.000 transaction per
second. Redis and Hazelcast are two tools that would address this need.

Analytics Toolbox (see §III.3.3.)

This is the very BIGG platform core: a set of services that will add value, quality and insight to
the incoming data:

• Gap detection – to rise alerts

• Outlier detection – to fine-tune the timeseries

• Timeseries filtering – to isolate interesting time or value intervals

• Fourier transform – to obtain a frequency-based domain model

D2.2 - Initial technical specifications and preliminary design of
BIGG Architecture building blocks

01/12/2021

 30

• K-Mean – to group datasets with a fast-clustering algorithm

• Regression – to find correlation between variables

• Weather – to analyze weather data

• Modeling – to compute predictive models and timeseries digital twins

• Validation – to validate datasets and timeseries

LS Adapter and Lakeshore

As an opposite to the datalake approach, a lakeshore contains an already harmonized,
transformed, eventually aggregated dataset that could be served at once to the analytic
services layer. This adapter will store and retrieve computed data to and from a timeseries
specialized repository that could be Apache Cassandra or InfluxDB.

Services as Monitor, Savings, Tracing, etc

Due to the flexibility offered by the microservices architecture and the message broker, it will
be relatively simple to add new services like for monitoring, for tracing, for savings estimation,
etc.

III.2.2.c. Distribution

This architecture will be distributed as a “docker compose” text file listing all the single
component docker image so that at once will be put up and running (as an example):

• Kafka

• Zookeeper (required by Kafka)

• Hadoop

• HBase

• Spark

• The Analytics Toolbox (defined as a “docker compose” in turn)

• All the microservices one by one

In this way it will be quite simple to download from the shared repository and deploy the BIGG
infrastructure on whatever environment the single participant wants to. Moreover, some
relevant components (Ingestor, Controller and Harmonized) will be distributed in a base
implementation that could be “overridden” (or completely replaced) by a customized
implementation done by the different participants. This sort of “component injection” could be
easily achieved by simply editing the “docker compose” text file.

As described in D2.1 deliverable, there are two families of components mainly:

• Data harmonization components, responsible for converting external data to and from
to BIGG harmonized format aimed at easing the use of tools provided by the platform

• Data analysis components14, responsible for the heavy lifting job of processing the
incoming data related to energy consumption to produce the KPIs (Key Performance
Indicators) relevant for decision making

This classification is kept hereafter to help identify commonalities that can emerge.

14 aka “AI Toolbox”

D2.2 - Initial technical specifications and preliminary design of
BIGG Architecture building blocks

01/12/2021

 31

III.3. Components

III.3.1. Ingestor Components

III.3.1.a. Overview

The Ingestor is a micro-service responsible to receive inbound transmissions about generic
data, anagraphical data, measurements, events and statuses from field devices, field data-
logger or external services, in order to route this data internally in the system.

The Ingestor must be:

▪ Unsolicited: listening to incoming transmissions and activating itself as reaction to

external activity.

▪ Available: keeping operative as much as possible, limiting at all possible the downtime

of the service

▪ Responsive: responding in a timely manner if at all possible.

▪ Generic and durable: managing incoming transmission in generic way, without claiming

to understand what’s the nature or the content of the transmission; requiring no

implementation and no configuration to receive new types of transmissions, if at all

possible.

▪ Efficient: engaging as less computational resources as possible.

▪ Scalable and elastic: allowing more instance of the micro-service to run in the system on

different nodes to (possibly linearly) increase the throughput; making easy to add, remove

or move instances across the system.

▪ Robust: coping with errors and with erroneous inputs without compromising the operation

of the system.

III.3.1.b. Architecture

The Ingestor is the entrance point for data transmissions coming from the field devices and
external systems. Data are pushed to the "input” topic as soon as possible. From there,
messages are ready to be consumed by the Harmoniser microservice:

D2.2 - Initial technical specifications and preliminary design of
BIGG Architecture building blocks

01/12/2021

 32

Figure 14) Ingestor artefact

III.3.1.c. Message Format

The Message Format is the format of all incoming data transmissions. This format is derived
from the Kafka record format and therefore it is compound of:

- Value
a sequence of bytes like those sent on a serial port, contained in a binary file or
transmitted via network interaction. For example, the body of the request received by
the Ingestor

- Type
the type or format of the value field. It’s a text string that must be enough to indicate
how to read the value.

- Key
for each fixed type, the key is a text string identifier of the source of the data message.
The couple (type, key) must be a universal identifier of the source of any data
transmission.

- Metadata
arbitrary textual information about a data message or about its source. Metadata are
structured as a collection of name-value pairs with textual names and textual values.
Names are repeatable. Examples of metadata are:

o encoding=UTF-8: indicating the encoding of the value bytes

o requestId=6651a560-da17-4807-ab4b-ebc01895f1fd: a unique id for the data
message initialized by the ingestor.

o requestTs=2019-07-08T20:01:10.804+02:00: timestamp at which the data
entered the system, initialized by the ingestor.

D2.2 - Initial technical specifications and preliminary design of
BIGG Architecture building blocks

01/12/2021

 33

III.3.1.d. Database

At present day, the Ingestor has no need of a database, thus it has no database.

III.3.1.e. Configuration

The microservice configuration will be written in a YAML format file containing the main
information as:

• Kafka URL as hostname and port (e.g. “127.0.0.1:9092”)

• The path and the port the API will be published on (e.g. “localhost:8888/api/ingestor”)

• Logging parameters as level and loggers (e.g. “level: INFO”)

III.3.1.f. Implementation

Two main classes will be implemented for this component:

DatalakeResource: The http end-point receiving http requests from the external world.

KafkaPusher: service able to dispatch messages via Kafka. The name of the topic is dynamic.

III.3.1.g. API

The Ingestor will offer an http API named “api/datalake”. Receiving external transmissions via
http is the objective of this API. Three ways of http post calls are supported:

 1. Form posts,

 2. Form file posts,

 3. Generic posts.

In the next three paragraphs we are going to see these three equivalent ways more in details.
We assume that the bytes to transmit into the system are the following 54 ASCII characters:

{"ts":1553071755,"ms":"temperature","v":23.6,"u":"°C"}

We also assume that the message needs some metadata to be tracked together with the
message itself and they are the following:

 • IEEE EUI64 identifier: 70B3D54750100052

 • location: 1st floor

 • division: automotive

We will use the IEEE EUI64 identifier as message key, while location and division as
metadata.

III.3.1.g.1. pi/datalake: Form posts

The Ingestor can accept incoming transmissions as form posts. This is the standard way html
forms are submitted, with content-type: application/x-www-form-urlencoded. Here is an
example of how to send data using the curl program:

curl --verbose \

 --request POST \

 --data location=1st-floor \

 --data division=automotive \

D2.2 - Initial technical specifications and preliminary design of
BIGG Architecture building blocks

01/12/2021

 34

 --data-urlencode

payload='{"ts":1553071755,"ms":"temperature","v":23.6,"u":"°C"}' \
https://host.name/ingestor/api/datalake/test-type/70B3D54750100052

III.3.1.g.2. api/datalake: Form file posts

The Ingestor can accept incoming transmissions as multipart form post. This is the standard
way used by html forms with files, with content-type: multipart/form-data. Supposing

that the file /tmp/payload.json contains the JSON document to send, here is an example of
how to send data using the curl program:

curl --verbose \

 --request POST \

 --form location=1st-floor \

 --form division=automotive \

 --form sn=70B3D54750100052 \

 --form dea=faab234875d86b99a1dd8f9afeffa4e7 \

 --form payload=@/tmp/payload.json \
 https://host.name/ingestor/api/datalake/test-type/70B3D54750100052

III.3.1.g.3. api/datalake: Generic posts

The Ingestor can accept incoming transmissions as an arbitrary http post. This is the fallback
method when the content-type is not application/x-www-form-urlencoded neither

multipart/form-data. In this case metadata must be encoded as http query string parameters
in the URL. Here is an example of how to send data using the curl program:

curl --verbose \

 --request POST \

 --header 'Content-type: application/json' \

 --data '{"ts":1553071755,"ms":"temperature","v":23.6,"u":"°C"}' \

 'https://host.name /ingestor/api/datalake/test-

type/70B3D54750100052?location=1st-

floor&division=automotive&dea=faab234875d86b99a1dd8f9afeffa4e7'

III.3.1.g.4. Inferred message key

In general, the URL to post data to the Ingestor is

https://host.name/ingestor/api/datalake/type/key

Where host.name, type and key are variables. The key in the url is used as key of the
message. The key in the url is optional for the Ingestor. On the other hand, it is not optional
for a message. If the key is not in the URL, in other words, if data are posted to an URL like
this:

https://host.name/ingestor/api/datalake/type

then the Ingestor tries to infer the key from the metadata. In fact, the micro-service looks for a
metadata with one of these names:

 ◦ sequence,

 ◦ key,

 ◦ sn,

 ◦ id,

 ◦ code,

 ◦ serial.

mailto:payload=@/tmp/payload.json
https://env.energis.com/ingestor/api/datalake/test-type/70B3D54750100052?location=1st-floor&division=automotive&dea=faab234875d86b99a1dd8f9afeffa4e7
https://host.name/ingestor/api/datalake/type/key
https://host.name/ingestor/api/datalake/type

D2.2 - Initial technical specifications and preliminary design of
BIGG Architecture building blocks

01/12/2021

 35

If such a metadata exists and it is single-valued, then the value is used as key for the message.
Otherwise, a random key is generated.

III.3.1.h. GUI

The Ingestor does not currently need a GUI, thus it has none.

III.3.2. Harmonization components

III.3.2.a. Roadmap overview

The Harmoniser has the objective to transform the data input from external systems into the
BIGG-designed harmonised data format that will make them compatible with the Analytics
Toolbox services. The Harmoniser component will be developed gradually throughout the
project, initially creating the necessary artifacts and testing them in the first phase, and further
evolving them as an integrated components at a second stage.

III.3.2.a.1. Harmoniser component artifacts (V1)

In V1 the initial artifacts for development of the component will be produced and tested. This
stage covers the research and initial development of the BIGG Standard Data Model 4
Buildings, the producing of initial Mapping Template, and the mapping of the data sources
supporting the Business Cases to it. These are developed in an iterative process in order to
ensure the necessary data fields and data relations are in place for each Business Case,
reveal and document the exact content of each data source in terms of variables and relations,
and perform the initial semantic matching to the BIGG Data Model. These artifacts will be
developed in a way ensuring further extension and connection to new data sources in the
future, and will also provide the necessary understanding for the implementation of the
automated operation of the Harmoniser envisaged for the second stage.

The artifacts developed in V1 are the following:

• BIGG Standard Data Model 4 Buildings, consisting of:

o UML diagram

o Data fields definition and description

o Enumerator taxonomies’ definition and description

• Mapping Template

• Individual mapping of each data source over the Mapping Template.

At this stage these artifacts are developed by using general purpose tools, such as Excel,
draw.io, etc. They are meant to be agnostic of the technologies, structures and formats in
which they will be implemented in the Harmoniser and the external systems. Proposed
artifacts are open enough to enable specific technical implementations for harmonisation
mechanisms, according to the prescriptions of the overall BIGG RAF.

At operational level, in order to ensure the overall testing of the BIGG RAF in V1, the
Harmoniser component artifacts will be used as a base for implementing customised
transformation of the raw data sources to the harmonised data structure. Dedicated custom
harmonisers will be implemented supporting each BIGG Business Cases. The development
of the communication between the Ingestor and Harmoniser will then be demonstrated and
implemented from the start of the project. The schema below represents the logic of this first
implementation:

D2.2 - Initial technical specifications and preliminary design of
BIGG Architecture building blocks

01/12/2021

 36

Figure 15) V1 version of the architecture of the ingestion/harmonization process

1. Every participant will locally set the required ingestors up in order to feed into the
system implementing the BIGG RAF their local datasets which have a specific format
related to their business case.

2. The raw data collection event created by the custom ingestor will be pushed over the
message bus and intercepted by a custom harmoniser which will transform
participant’s data into a normalised data. The custom harmoniser will be the first
implementation of the harmonisation artefacts provided by WP4 work.

3. From a technical point of view, a boilerplate code can be provided that describe generic
harmoniser behaviour so the BIGG consortium's developers can use it as a base to
implement their custom harmoniser.

III.3.2.a.2. Harmoniser component (V2)

Version two of the harmoniser component pushes the genericity further. A harmoniser will be
implemented as a containerised component that can be installed on cloud or integrated into a
local system and will be able to receive input data messages and transform them into a
common harmonised data message format directed to any system component that can benefit
from it.

The Harmoniser will implement a “Mapper” structure that describes the transformation from
the original to the harmonised format and will be operated as a microservice.

D2.2 - Initial technical specifications and preliminary design of
BIGG Architecture building blocks

01/12/2021

 37

The Mapper will be created from a core module named “Transformer”. As an input the
Transformer receives as a configuration a Standard Mapping Template and produces a
transformation of the original data model format into a RDF structure, which is then aligned to
the BIGG Data Model. The hamoniser will enable the translation of the incoming messages
from the mapped data sources emitted from the Ingestors into the BIGG common message
format.

The Harmoniser will operate in the system as a microservice based on the “Processor” pattern.
It will be responsible for translating all incoming messages to a common message format so
that any other component of the system can benefit of any data message in a fast and
standardized way. The Harmoniser must be:

1. Responsive: minimizing the latency from the incoming message to the time the message
has being stored and handled by the system.

2. Maintainable and extensible: allowing to respond quickly to the market that asks for new
formats of data message to be supported by the system.

3. Efficient: engaging as less computational resources as possible.

4. Elastic and scalable: allowing more instances of Processor to run in the system on
different nodes to increase (possibly linearly) the throughput; making easy to add, remove
or move instances in the system.

5. Robust: coping with error and with erroneous inputs without compromise the operation of
the system.

The following schema depicts the overview of a workflow involving the harmoniser V2
component:

D2.2 - Initial technical specifications and preliminary design of
BIGG Architecture building blocks

01/12/2021

 38

Figure 16) V2 version of the architecture of the ingestion/harmonization process

1. Custom ingestors will get connected to external participant’s sources to feed
participant’s raw data into the BIGG system

2. The harmoniser V2 is triggered on a raw data ingestion event. It uses the mapping files
defined in WP4 in a generic process of converting input raw data structures into RDF
harmonized information that can be used in later processes of an implemented BIGG
components pipeline.

D2.2 - Initial technical specifications and preliminary design of
BIGG Architecture building blocks

01/12/2021

 39

III.3.2.b. Architecture

The Harmoniser is a micro-service cooperating with other components of the BIGG RAF:

- Ingestor: those components are responsible for introduce the data messages into the
system, without taking care of the meaning and the format of the data. They, in a
loosely-coupled way (based on Kafka topics), are responsible to feed the Harmoniser
with data message of arbitrary format.

- Adapter and other adapters: other components that needs to receive data and they
need the data in a common format. The Harmoniser delivers data to them, in a loosely-
coupled way, based on Kafka topics.

Figure 17) Harmoniser artefact

III.3.2.c. Harmonized Message Format

The Harmonized Message Format is the format of all incoming data message. It is derived
from the Kafka record format and therefore it is compound of:

- Value
The JSON serialization of the resulting harmonized message

- Type
the type or format of the value field. It’s a text string that must be enough to indicate
how to read (de-serialize and de-harmonize) the value.

- Key
for each fixed type, the key is a text string identifier of the source of the data message.
The couple (type, key) must be a universal identifier of the source of the data message.

- Metadata
arbitrary textual information about a data message or about its source. Metadata are
structured as a collection of name-value pairs with textual names and textual values.
Names are repeatable. Examples of metadata are:

o encoding=UTF-8: indicating the encoding of the value bytes

o requestId=6651a560-da17-4807-ab4b-ebc01895f1fd: a unique id for the
data message initialized by the ingestor.

o requestTs=2019-07-08T20:01:10.804+02:00: timestamp at which the data
entered the system, initialized by the ingestor.

D2.2 - Initial technical specifications and preliminary design of
BIGG Architecture building blocks

01/12/2021

 40

III.3.2.d. Database

At present day, the Harmoniser has no need of a database, thus it has no database.

III.3.2.e. Configuration

The Harmoniser has to both consume and produce Kafka messages, so the YAML
configuration file must have consumer and producer configuration keys:

• consumer.bootstrap.servers (Kafka instance e.g. “localhost:9092”)

• consumer.topics (topics list or pattern e.g. “input-*”)

• producer.bootstrap.servers (Kafka instance e.g. “localhost:9092”)

• producer.topic (topic to produce to, e.g. “harmonized”)

• server path and port (e.s. “localhost:8093/api/processor”)

• logging (es. “Level: INFO”)

III.3.2.f. Implementation

The implementation of the Harmoniser is based on a simple interface named the “mapper”:

public interface Mapper<C,S> {

 public S mapFrom(C c);

 public C mapTo(S s);

}

All its implementations will be used to map from the original format to the harmonized format

and vice versa. The following class diagram depicts the main components of the

microservice:

Figure 18) Main components of a BIGG harmoniser

D2.2 - Initial technical specifications and preliminary design of
BIGG Architecture building blocks

01/12/2021

 41

- KafkaPuller
this class will consume input messages in original format and will deliver its content to
the Manager

- Manager
the manager will process the message sending its content to the right “Harmoniser”
implementation (I.e. MessageHarmoniser, MetricHarmoniser, etc.) and, once received
the corresponding harmonized message, propagating it to the “pusher”

- Harmoniser
the “harmoniser” interface will be an extension of the “mapper” interface described
above. Every partner will develop the set of harmonisers that will accomplish their
respective requirements handling their proprietary formats

- KafkaPusher
this class will send the harmonized messages to the proper Kafka topic to let the
“adapters” to retrieve the content

III.3.2.g. GUI

The Harmoniser does not need a GUI, thus it has none.

III.3.3. Data processing/analysis components

This section will present the data processing and analysis components that will be created in
the BIGG project. These components are presented here but are more deeply detailed and
documented on biggproject/biggdocs GitHub15.

The BIGG GitHub has been separated in three separate sections:

1. BiggDocs : Where all the functions are defined and described in details

2. BiggPy: Where the functions are implemented in Python language

3. BiggR: Where the functions are implemented in R

The creation of these BIGG data processing and analysis components is a critical part of the
BIGG project. Defining and implementing these components is an iterative process that will
span throughout the duration of the BIGG project.

At the time of writing this document only a snapshot of these components’ definitions can be
provided. It is recommended to directly go to the GitHub repository in order to find more
detailed and more up to date descriptions of the WP5 toolbox components.

III.3.3.a. Data preparation

III.3.3.a.1. Data Preparation / Time Stamps Alignment

a. detect_time_step

The function infers, i.e. automatically deduces from the input data, the minimum time step
(frequency) that can be used for the input time series.

b. align_time_grid

15 https://github.com/biggproject/biggdocs

https://github.com/biggproject/biggdocs

D2.2 - Initial technical specifications and preliminary design of
BIGG Architecture building blocks

01/12/2021

 42

The function aligns the frequency of the input time series with the output frequency given as
an argument using the specified aggregation function.

c. clean_ts_integrate

The function converts a cumulative (counter) or onChange (delta) measurement
to instantaneous.

III.3.3.a.2. Data Preparation / Outlier Detection

a. detect_ts_min_max_outliers

Detect elements of the time series outside a minimum and maximum range.

b. detect_ts_zscore_outliers

Detects elements of the time series out of a Z-score threshold, applied on the whole time
series or a rolling window of predefined width.

c. detect_ts_calendar_model_outliers

Detects elements of the time series out of a confidence threshold based on linear model of
the calendar variables (month, weekday, hour).

d. plot_outliers

This function prints out the outliers detected in the former 4 functions.

e. detect_static_min_max_outliers

Detect which numerical elements are outside the min-max range.

f. detect_static_reg_exp

Detects which string element satisfy the regular expression.

III.3.3.a.3. Data Preparation / Missing Data Management

a. fill_ts_na

This function sets values to Not Available (NA) elements of a time series, based on the outliers
estimation made the functions implemented in Outlier Detection module block of this library.

III.3.3.b. Data Transformation

III.3.3.b.1. Data Transformation / Profiling

a. clustering_dlc

Cluster similar daily load curves based on the load curves itself, calendar variables and
outdoor temperature.

b. classification_dlc

Classify daily load curves based on the outputs of a clustering and a new set of data.

c. weekly_profile_detection

The function returns the weekly profile of the input time series.

D2.2 - Initial technical specifications and preliminary design of
BIGG Architecture building blocks

01/12/2021

 43

d. yearly_profile_detection

The function returns the yearly profile of the input time series.

e. trend_estimation

This function detects general trends in a given time series. A trend would be defined as a long
time tendency agnostic of short-term variations. (to be developed in the AI Toolbox v2)

III.3.3.b.2. Data Transformation / Weather

a. Degree_Days

Calculate the degree-days with a desired output frequency and considering cooling or heating
mode.

b. Degree_Raw

Calculate the difference between outdoor temperature and a base temperature, without
considering the frequency of the original data.

III.3.3.b.3. Data Transformation / Autoregressive processes

a. lag_components

This function time shifts a set of features in order to be used in the training and prediction of
the models. It is an important step for the multi-step prediction of Autoregressive models,
where the estimated output is directly used in the subsequent predictions.

b. lpf_ts

This function computes the first-order low pass filter for smoothing a time series.

c. get_lpf_smoothing_time_scale

Physical transformation of the smoothing time scale parameter to consider no affectance to
the output variable after a known number of hours.

III.3.3.b.4. Data Transformation / Calendar

a. calendar_components

Decomposes the time in date, day of the year, day of the week, day of the weekend, working
day, non-working day, season, month, hour, minute, ...

III.3.3.b.5. Data Transformation / Fourier Series

a. fs_components

Obtains the components of the Fourier Series, in sine-cosine form. It is useful for linearising
the relationship of a seasonal input time series (e.g. solar azimuth, solar elevation, calendar
features, ...) to some output (energy consumption, indoor temperatures, ...). It basically
decomposes a cyclic time series into a set of sine-cosine components that are used as inputs
for the modelling of some output, each of the components linearly depends to the output.

D2.2 - Initial technical specifications and preliminary design of
BIGG Architecture building blocks

01/12/2021

 44

III.3.3.c. Modelling

III.3.3.c.1. Data Modelling / Cross Validation

a. k_fold

This function is already part of an existing analytics package of Python named Sci-kit Learn.
It provides train/test indices to split data in train/test sets. Split dataset into k consecutive folds
(without shuffling by default).

Each fold is then used once as a validation while the k - 1 remaining folds form the training
set. (Source: Scikit-Learn.org)

b. time_series_split

This function is already part of an existing analytics package of Python named Sci-kit Learn:

It provides train/test indices to split time series data samples that are observed at fixed time
intervals, in train/test sets. In each split, test indices must be higher than before, and thus
shuffling in cross validator is inappropriate.

This cross-validation object is a variation of KFold. In the kth split, it returns first k folds as train
set and the (k+1)th fold as test set.

Note that unlike standard cross-validation methods, successive training sets are supersets of
those that come before them.(Source: Scikit Learn)

c. train_test_split

This function is already part of an existing analytics package of Python named Sci-kit Learn:

It Split arrays or matrices into random train and test subsets

Quick utility that wraps input validation and next(ShuffleSplit().split(X, y)) and application to
input data into a single call for splitting (and optionally subsampling) data in a oneliner.
(Source: Scikit Leaarn)

III.3.3.c.2. Data Modelling / Model Assessment

a. Cross_validate

This function is already part of an existing analytics package of Python named Sci-kit Learn:
This function Evaluate metric(s) by cross-validation and also record fit/score times.Data
Modelling / Model Identification.

(Source: Scikit Learn)

b. Cross_val_score

This function is already part of an existing analytics package of Python named Sci-kit Learn.It
Evaluate a score by cross-validation.

(Source: Scikit-Learn)

c. evaluate_model_cv_with_tuning

This function performs a nested cross-validation (double cross-validation), which includes an
internal hyper-parameter tuning, to reduce the bias when combining the two tasks of model
selection and generalization error estimation. However, the purpose of this function is not to

https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.KFold.html#sklearn.model_selection.KFold
https://realdolmen-my.sharepoint.com/personal/maria_perezortega_realdolmen_com/Documents/BIGG/sklearn.model_selection.TimeSeriesSplit
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html#sklearn.model_selection.train_test_split
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.cross_validate.html?highlight=cross%20validate#sklearn-model-selection-cross-validate
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.cross_val_score.html#sklearn.model_selection.cross_val_score

D2.2 - Initial technical specifications and preliminary design of
BIGG Architecture building blocks

01/12/2021

 45

select the best model instance of a model family but instead to provide a less biased estimate
of a tuned model’s performance on the dataset.

III.3.3.c.3. Data Modelling / Model Identification

a. identify_best_model

This function implements a complete generalized pipeline for supervised learning to find the
best model among different model families, each one associated with a specific parameter
grid, given an input time series and a scoring function.

III.3.3.c.4. Data Modelling / Model Persistence and prediction

a. serialize_model

This procedure serializes a model, according to the specified file format and saves it on the
file system following a specific convention (tbd).

b. deserialize_and_predict

This function deserializes a model, inferring the file format from the file name, applies the
model on the X_data and returns the predicted values in the form of a time series.

c. test_stationarity_acf_pacf

This function tests the stationarity and plot the autocorrelation and partial autocorrelation of
the time series.

d. split_train_test

This function splits the time series into train and test datasets at any given data point.

e. param_tuning_sarimax

This function performs an exhaustive search on all the parameters of the parameter grid
defined and identifies the best parameter set for a sarimax model, given a scoring function.

f. param_tuning_prophet

This function performs a search on all the parameters of the parameter grid defined and
identifies the best parameter set for a prophet model, given a MAPE scoring.

g. fit_sarimax

This function trains and fits a SARIMAX model

h. test_sarimax

This function gets the prediction of the sarimax model.

i. fit_prophet

This function trains and fits a PROPHET model

j. test_prophet

This function gets the prediction of the prophet model.

k. evaluate_forecast

D2.2 - Initial technical specifications and preliminary design of
BIGG Architecture building blocks

01/12/2021

 46

This function calculates evaluation metrics for the prediction.

l. schedule_optimizer

This function gives alternative schedules for households to answer to the flexibility request.

III.3.3.d. Reinforcement Learning thermal model

Description of the thermal model of the building that can be used to estimate future gas
flexibility. This is a sequential model to estimate the next time steps room temperature and
gas consumption given the boiler and room temperate set points.

III.3.3.d.1. Thermal Model / Dynamics

a. RoomT_next

This function calculates the room temperature for next time step. This is based on the space
heating model.

b. BuildingT_next

This function calculates the building temperature (temperature of the thermal mass of the
building) for next time step. This is based on the space heating model.

c. BoilerInletT_next

This function calculates the boiler inlet temperature for next time step. This is based on the
space heating model.

d. BoilerOutletT_next

This function calculates the boiler outlet temperature for next time step. This is based on a
decay/growth model for the boiler temperature, where a1 and a2 are the variables that control
the rate of change of boiler temperature.

e. Gas_modulation

This function calculates the Gas modulation at the next time step. This is based on the boiler
model. b1 and b2 are parameters used for the internal model of the boiler

III.3.3.d.2. Thermal Model / PhysicsCell

a. PhyCell

Description function for the Class PhyCell for space heating.

b. PhyCell. forward()

Forward method for the PhyCell class.

c. PhyCell. set_param()

Forward method for the PhyCell class.

d. PhyCell. get_param()

Function that returns the dictionary of the parameters of the current instance of the PhyCell
object.

https://github.com/biggproject/biggpy/blob/5e2d617ffdd256cefa56f156bab8f8f548716822/ai_toolbox/src/ai_toolbox/RL/ThermalModel/dynamics.py#L41

D2.2 - Initial technical specifications and preliminary design of
BIGG Architecture building blocks

01/12/2021

 47

e. PhyCell. set_param_grad()

The forward method for the PhyCell class.

f. PhyCell. param_loss()

Function to calculate the loss for the parameters of the PhyCell. This loss is calculated using
the weight loss function defined in the training section of Flexibility Identification.

III.3.3.d.3. Thermal Model / DenseNet

a. DenseNet

A function to create a DenseNet neural network with given layers.

III.3.3.d.4. Thermal Model / Model

a. thermalmodel

Thermalmodel class, can be used to create a thermalmodel object. This object can be trained,
validated and tested using data

III.3.4. Output layer components

Regarding the RAF architecture, the output layer components are the components located at
the end BIGG processing pipelines. These components are responsible for collecting the
added-value information created by the BIGG pipelines in order to pass them to the end-users
or external systems.

D2.2 - Initial technical specifications and preliminary design of
BIGG Architecture building blocks

01/12/2021

 48

Figure 19) Output layer consumer components positioning in the RAF architecture

The output layer components are controller type-of-components regarding the RAF
architecture. They consume high-level output messages from the message bus to process
valuable knowledge created by the BIGG system. They are then responsible to provide this
information to external systems. In order to do that, they consume standard output messages
from the communication bus but need to have a custom technical implementation to process
them and expose output data in a required presentation for specific end-users or to implement
the required protocols to communicate with external systems. Some examples are provided
below:

1. A custom dashboard connection can be implemented in a controller as an output of a
BIGG pipeline. Such a dashboard is custom because it has to be tailored to clients’
business cases which are very specific (ex: Energis Cloud dashboard).

2. Some business cases implemented with the BIGG architecture can aim at controlling
buildings’ automations (e.g: triggering the change of a temperature setpoint in a room

D2.2 - Initial technical specifications and preliminary design of
BIGG Architecture building blocks

01/12/2021

 49

based on an analysis performed in the BIGG toolbox). In that case, a custom controller
needs to be created to communicate with edge devices controlling building systems.

3. In some situations, customer business cases are so complex that they require to be
driven by external systems. These systems, that may be pre-existing, need to receive
information from the BIGG pipelines in order to manage complex scenarios where
custom dashboards are created or building devices are managed. In that case a
custom controller must be created which captures the knowledge created by BIGG
toolbox and transfers this information to an external system, using the appropriate
communication channel.

III.3.5. Integration Layer Components

All the components described in this document need to be organised in pipelines to implement
specific big data processing scenarios tailored to the particular business cases. This section
will describe the components that can help to organise BIGG components, using state of the
art architecture patterns like choreographed architecture or orchestrated architecture. The first
paragraph of this section will introduce some enabling components that can be used to make
the integration of other BIGG components more efficient and more versatile.

III.3.5.a. Enabler components

III.3.5.a.1. API Gateway

Figure 20) API gateway component

An API gateway is a microservice that has a simple purpose: to be aware of all other
microservices in the system and to expose all of their APIs as a unique entry point to external
calls:

An external caller could be a mobile app, a web app, an IoT device and a third-party system.
In every case, this caller will use a unique front end with a unique API call. Behind the scene,
the API Gateway will receive this call and will use all the necessary microservices to process
it and to give a response to the caller. Through this decoupling mechanism, the API Gateway
could offer a lot of value-added services: it can, for example:

D2.2 - Initial technical specifications and preliminary design of
BIGG Architecture building blocks

01/12/2021

 50

• transform the content and the protocol of the call;

• offer a security layer protecting the microservices from unauthorized calls;

• throttle the calls in case of performance degradation;

• as a single entry-point, meter the overall performance of the system;

• centralize the error handling;

• balance the load on multiple instances of the microservice to increase throughput;

The implementation of this component could be based on ZooKeeper16, an open-source
project which enables highly reliable distributed coordination”. ZooKeeper is a centralized
service for maintaining configuration information, naming, providing distributed
synchronization, and providing group services. ZooKeeper allows distributed processes to
coordinate with each other through a shared hierarchical name space of data registers (these
registers are called znodes), much like a file system. It is a necessary component for Kafka,
and we could leverage this dependency using some of its functionalities. On top of ZooKeeper,
to facilitate the usage of its API’s, a tool like Curator17 could be used. The following schema
depicts the usage of Curator library:

Figure 21) API gateway component technical implementation

With Curator, using ZooKeeper to store a microservice configuration within a ZNode “service
path” will be very simple:

// json object mapper

// to serialize and deserialize configuration

ObjectMapper mapper = new ObjectMapper();

// instantiate and start a client pointing to ZooKeeper instance and

16 https://zookeeper.apache.org/

17 https://curator.apache.org/index.html

D2.2 - Initial technical specifications and preliminary design of
BIGG Architecture building blocks

01/12/2021

 51

// with the desired retry policy

CuratorFramework curatorFramework =

CuratorFrameworkFactory.newClient("localhost:2181", new

ExponentialBackoffRetry(5000, 10, 120000));

curatorFramework.start();

// creating of a node

String node = curatorFramework

.create()

.creatingParentsIfNeeded()

.withMode(CreateMode.EPHEMERAL)

.forPath("/services/bigg/ingestor", mapper.writeValueAsBytes(<object describing

ingestor service >));

// read the array of bytes stored in path

byte[] result = curatorFramework.getData().forPath(node);

// update of a node

Stat stat=new Stat(); // storage node information

curatorFramework.getData().storingStatIn(stat).forPath(node);

stat=curatorFramework.setData().withVersion(stat.getVersion()).forPath(node,

mapper.writeValueAsBytes(<object describing ingestor service >))

// delete of a node

curatorFramework.delete().forPath(node);

As a possible microservice configuration, the following structure could be used:

public class ServiceDescriptor {

 private String name;

 private String description;

 private String host;

 private String port;

 private String apiUrl;

}

Once all the microservices are auto-registered in ZooKeeper’s ZNodes, the API Gateway
could easily retrieve their configurations and URLs:

D2.2 - Initial technical specifications and preliminary design of
BIGG Architecture building blocks

01/12/2021

 52

List<String> uris = curatorFramework.getChildren().forPath("/services/bigg”);

Then, for a basic API Gateway implementation, we need to forward the external calls to the
proper pipeline of microservices.

III.3.5.a.2. Commander

Exploiting the functionalities offered by the API Gateway, the Commander will be the real
orchestrator of the BIGG platform. The main idea is the Commander will send to the API
Gateway a call organized in two parts:

• pipeline
a list of services the API Gateway must call in the ordered sequence using the
response of the previous service as the request of the next

• data
the byte array that represents the serialized stream of the input for the first service to
call

Figure 22) Commander component

In a second version could be implemented other functionalities like persisting a library of
predefined pipelines.

III.3.5.b. Components of a choreographed architecture

Just like in a ballet, each dancer knows exactly his movements and how he must interact to
the other dancers, in a choreographed architecture each microservice knows its inputs, its
outputs and how to communicate with the other microservices to enact the business process.
Choreography is an event-driven process started by the incoming message and the pipeline
is determined by the microservices implementation and configuration (in terms of input/output
topics to consume from and produce to). The following diagram shows the implementation of
a pipeline using proper topic names and configuring accordingly the microservices:

D2.2 - Initial technical specifications and preliminary design of
BIGG Architecture building blocks

01/12/2021

 53

Figure 23) Example of a choreographed flow in the BIGG RAF

III.3.5.c. Components of an orchestrated architecture

If, on one hand, a choreographed architecture suits well for the “ingestion” process in the RAF
that is, by nature, event driven, on the other hand we need another approach if we want to
make the RAF usable by third-party systems or external entities like participant’s users in a
request-response fashion. In this second case, a way to dynamically define a “pipeline” of calls
and to submit this sequence to the “black-box” BIGG RAF is to be provided as well. The
following diagram shows the components that must be present in this scenario:

D2.2 - Initial technical specifications and preliminary design of
BIGG Architecture building blocks

01/12/2021

 54

Figure 24) Example of an orchestrated flow in the BIGG RAF

D2.2 - Initial technical specifications and preliminary design of
BIGG Architecture building blocks

01/12/2021

 55

IV. MAPPING OF FRAMEWORK COMPONENTS WITH

BUSINESS CASES TECHNICAL ARCHITECTURES

The goal of this section is to present the different specific architectures setups for the
different BIGG business cases with an emphasis set on the supporting services modules of
the BIGG analytics toolbox that are used withing these pilot implementations.

The goal here is to validate that the objectives of the description of work are fulfilled by the
business-cases-supporting architectures implemented in BIGG. These objectives are for
instance:

• 1 ([…] implement a flexible and open-source big data reference architecture[…]),

• 3 ([…]develop an open,[…]building-related data analytics toolbox […])

• 4 ([…] BIGG Data Analytics Toolbox over the BIGG Data Reference Architecture 4
Buildings […] supporting different multi-party business cases […])

This section starts by presenting the role of the overall BIGG KPI dashboard shared by pilots,
meant to evaluate the BIGG platform usage & performance.

Then, for every BIGG business case, the flow of information among the different BIGG
components in the BIGG RAF is described for a pragmatic implementation in version 1. These
flows will be updated for the version 2 of the implementation of the BIGG platform.

IV.1. Role of the BIGG KPI dashboard

The BIGG KPI dashboard will serve as a monitoring tool to provide a general overview of pilot
status and progress. The platform will be centrally located and fetch data from distributed pilot
sites, through remote data sources or through an API and local storage of data.

The dashboard will be built using the Grafana 18 framework, which is easily deployed,
customized and provides a generic set of visualization panels and a multitude of data source
connectors out of the box capable of fetching data from various types of data sources such as
PostgresDB, MysqlDB, InfluxDB, OpenTSDB, CSV etc.

The dashboard will host data relevant to the Business and Use cases, show general metrics
of the data provided to the BIGG platform and the KPIs that were decided in WP6 for each
Use Case. Additionally, target goals set by the pilots will be visualised to better monitor the
progress of each pilot.

Figure 25) BIGG PKI dashboard user interface prefiguration

18 https://grafana.com/

https://grafana.com/

D2.2 - Initial technical specifications and preliminary design of
BIGG Architecture building blocks

01/12/2021

 56

IV.2. Business cases #1, #2 and #3 - Case Study
Area: Catalonia (Spain)

These business cases will implement service modules from the BIGG analytics toolbox for UC
1 to 7, gathering and harmonizing data from different sources (utilities, energy management
systems, existing databases) to the internal standard data model of the BIGG architecture.
The ingestion and harmonization process will be managed by a Kafka message broker. At
least for the first version the harmonisers will be developed ad hoc for each data source, these
components will be opened as OSS to be used for other BIGG users.

The use cases included in these 3 Business cases (1 to 3) will use most libraries and analytic
components developed in BIGG. These components will be dockerized and executed through
a Kubernetes orchestrator (Argo). In the following section the analytics components use in
these cases are presented:

• Data preparation over harmonized data all, the type of process launched depends on
each resource. The threads that can be launched are:

• Time stamp alignment

• Outlier detection

• Missing data management

• Data transformation over prepared data in UC 1, 2, 3, 4. The type of process launched
depends on each resource. The threads that can be launched are:

o Profiling

o Autoregressive process

o Calendar

o Fourier Series

• Data modelling over data transformed in UC 1, 2. The type of process launched
depends on each resource. The threads that can be launched are:

o Cross validation

o Model Assessment

o Model identification

o Model persistence and prediction

The following figure shows the execution pipeline and the integration of the BIGG components
for these Business Cases:

D2.2 - Initial technical specifications and preliminary design of
BIGG Architecture building blocks

01/12/2021

 57

Figure 26) Business cases #1, #2 and #3 envisioned technical implementation

D2.2 - Initial technical specifications and preliminary design of
BIGG Architecture building blocks

01/12/2021

 58

Here are the technical components that will be setup for V1 implementation of the BIGG RAF
for these business cases:

Pipeline
component

Input Output Implementation Standard BIGG
component

Ingestor Query API
external data
sources

Raw Data Ad hoc script
developed for
each source

Ad hoc for each
resource. Offered
in BIGG as OSS.

Harmoniser Raw data

CVS, XML, json

BIGG format
harmonized data:

Ad hoc script
developed for
each source

Ad hoc for each
resource. Offered
in BIGG as OSS.

Data lake JSON Payload
format

JSON Payload
format

HBASE No, CIMNE
environment

Lakeshore RDF format JSON Payload
format

MongoDB /Neo4J No, CIMNE
environment

Analytics toolbox Harmonised data
from Lakeshore
or Data Lake

Harmonised data
results to
Lakeshore or
Data Lake

GitHub public
library

Yes

Controller Computation
service

No, CIMNE
environment

User Interface API REST Final user
dashboard

Backend and
frontend
implemented in
JavaScript

No, CINE
environment.
Offered in BIGG
as OSS.

IV.3. Business cases #4 and #5 - Case Study Area:
Athens (Greece)

From the architectural point of view, these Business Cases will be implemented in a first
version, for the most part, using proprietary microservices derived from the base BIGG
components. The process will use the Analytics Toolbox through the API Gateway and the
Commander and will retrieve results and commands to forward to the IoT devices for
optimization purposes by the Controller:

D2.2 - Initial technical specifications and preliminary design of
BIGG Architecture building blocks

01/12/2021

 59

Figure 27) Business cases #4 and #5 envisioned technical implementation V1

D2.2 - Initial technical specifications and preliminary design of
BIGG Architecture building blocks

01/12/2021

 60

A second, more integrated version of the architecture will use a “bigg-adapter” microservice
to communicate with a shared BIGG RAF environment instantiated on the cloud:

Figure 28) Business cases #4 and #5 envisioned technical implementation V2

D2.2 - Initial technical specifications and preliminary design of
BIGG Architecture building blocks

01/12/2021

 61

Supporting services modules from the BIGG analytics toolbox for UC 8 to 13

• For Business case #4

 Monitoring service module collecting data from BMS, IoT sensors, utility invoices …,
computing relevant KPIs which can be viewed in dashboards and reports. Identification of
baseline models which are mathematical equations giving dependencies between
consumption and influencing factors such as weather and occupancy. The model accuracy
is assessed according to the IPMVP protocol.

 Contract Management service module to manage EPC and maintenance contracts.
Involved stakeholders are notified when milestones are reached. Reports are generated
for follow-up purposes.

Here are the technical components that will be setup for V1 implementation of the BIGG RAF
for this business case:

Pipeline
component

Input Output Implementation Standard BIGG
component

Ingestor Query API
Energis
connect

KAFKA
Message

Yodiwo
connector

No, Energis.Cloud

Harmoniser KAFKA
Message

Harmonized
KAFKA
Message

Mapping at data
source level

No, Energis.Cloud

Data lake KAFKA
Message

Storage in
Mongo DB

Mongo DB No, Energis.Cloud

Lakeshore Harmonized
KAFKA
Message

Storage in
Cassandra

Cassandra No, Energis.Cloud

Analytics
toolbox

Get via
Energis.Clo
ud
Middleware
API

Post via
Energis.Cloud
Middleware
API

Github public
library

Energy
modelling

Yes

Commander New
microservice
orchestrating
different calls
(pipeline)

Yes

Dashboard
for clients

 M&V Savings
dashboard

No, Energis.Cloud

D2.2 - Initial technical specifications and preliminary design of
BIGG Architecture building blocks

01/12/2021

 62

• For Business case #5

 Optimisation service module addressing the different goals related to energy efficiency,
renewable energy usage, comfort and cost of the building together and not in an isolated
way. Weather conditions have a direct impact on the energy demand of buildings (e.g.
necessity of heating/cooling). Forecasted weather conditions will allow to proactively
match energy demand and supply (e.g. heat less if large solar gains are expected later in
the day). Multi-objective function resolution to support building optimization

Here are the technical components that will be setup for V1 implementation of the BIGG RAF
for this business case:

Pipeline
component

Input Output Implementation Standard
BIGG

component

Ingestor Query API
Energis connect

KAFKA
Message

Yodiwo connector No,
Energis.Cloud

Harmoniser KAFKA Message Harmonized
KAFKA
Message

Mapping at data
source level

No,
Energis.Cloud

Data lake KAFKA Message Storage in
Mongo DB

Mongo DB No,
Energis.Cloud

Lakeshore Harmonized
KAFKA Message

Storage in
Cassandra

Cassandra No,
Energis.Cloud

Analytics
toolbox

Get via
Energis.Cloud
Middleware API

Post via
Energis.Cloud
Middleware
API

Github public library

Occupancy modelling

Thermal modelling

Yes

Commander New microservice
orchestrating different
calls (pipeline)

Yes

Controller Configuration of rules
on edge device

No,
Energis.Cloud

Dashboard
for clients

 Comfort dashboard No,
Energis.Cloud

Edge
devices

Get via
Energis.Cloud
Middleware API

Commands
towards HVAC
devices

Rule execution engine No.

Raspicy

D2.2 - Initial technical specifications and preliminary design of
BIGG Architecture building blocks

01/12/2021

 63

IV.4. Business case #6 - Case Study Area: Several
cities (Greece)

UC 14 to 15 will leverage both services developed by DOMX and HERON partners, as well
as libraries and analytic components developed in BIGG. These components will be
dockerized and orchestrated using Docker Swarm and are presented below:

Data ingestion

Gathering of data from different sources:

• Real-time data of IoT devices (electricity submeters, heating controllers, sensors) from
time-series DB

• Static data from local SQL DB (user and building data)

• Static data from remote DBs (EPC registry, billing, consumption) and files (CSV, JSON)

• Real-time meteorological data through remote APIs

For the first version, the ingestion components will be developed as Microservices customized
for each different data source.

Analytics toolbox

The UCs 14 and 15 will use libraries and components of the BIGG Analytics toolbox. Key
required components include the following:

• Fast-clustering – to group datasets

• Regression – to find correlation between variables

• Modelling – to compute predictive models and timeseries digital twins

• Validation – to validate datasets and timeseries

• Forecasting - to forecast the energy consumption of building assets

The following processes will also be executed through the Analytics toolbox

1. Data preparation. Data cleaning, preparation and quality check service will be executed
for all collected real-time data sources and implemented based on BIGG OSS components
that will be used to transform existing Python scripts into the BIGG architecture. The
existing implementation currently includes the following steps:

o Time stamp alignment

▪ Resampling all real-time data to 1sec

▪ Interpolation for nan values

• Resampling again to 10s

o Outlier detection

▪ Filtering out extreme values with predefined thresholds for potential
sensor errors

o Missing data management

D2.2 - Initial technical specifications and preliminary design of
BIGG Architecture building blocks

01/12/2021

 64

o Detecting and zeroing-out disconnection windows.

o Data transformation over prepared data for UCs 14 and 15 will include the
harmonization of data from different sources to the internal standard data model of
the BIGG architecture.

2. Data modelling. Data modelling over data transformed for UCs 14 and 15 will include the
following steps:

▪ Cross validation

▪ Model Assessment

▪ Model identification

▪ Model persistence and prediction

User interface

The UCs 14 and 15 will use both custom partner dashboards, as well as the common BIGG
dashboard of BIGG. The custom dashboards will be used to visualize the output of the Energy
efficiency and Flexibility services. The common BIGG dashboard will be used to visualize in
real-time the status of participating households IoT sensors, smart meters, status per
connected device, user settings. Pilot level calculated KPIs will be visualized both through
dashboards and reports.

The following figure shows the execution pipeline and the integration of the BIGG components
for UC 15.

D2.2 - Initial technical specifications and preliminary design of
BIGG Architecture building blocks

01/12/2021

 65

Figure 29) Business cases #6 envisioned technical implementation

D2.2 - Initial technical specifications and preliminary design of
BIGG Architecture building blocks

01/12/2021

 66

Here are the technical components that will be setup for V1 implementation of the BIGG RAF
for this business case:

Pipeline
component

Input Output Implementation Standard BIGG
component

Ingestor Query local DBs

Query API
external data
sources

Import local files

Raw data
(JSON)

Microservice
customized for
each different
data source

No
DOMX and
HERON tools

Harmonizer Raw data
(JSON format) -
Broker Message

BIGG format
harmonized data:

BIGG OSS
components

Yes
BIGG OSS
components.

Data lake MQTT Message
(JSON Payload)

Storage in
Timeseries DB

InfluxDB No
DOMX & HERON
tools

Lakeshore

BIGG
Harmonizer
output

Storage in
Timeseries DB

InfluxDB No
DOMX & HERON
tools

Analytics
toolbox

Harmonized,
Processed,
Cleaned
TimeSeries data

Storage in
InfluxDB/Mongo
DB

GitHub public
repository

Yes

Commander REST API

MQTT broker
message

Cloud device
management
service

No
DOMX and
HERON tools

User Interface REST API Web dashboards Backend and
frontend
implemented in
JavaScript

Yes
both existing
partner
dashboards and
the common
BIGG dashboard.

Edge device MQTT message Commands
towards: 1.
natural gas
boilers

2. Electric water
heaters

MQTT broker No.

DOMX heating
controller

HERON meters
and actuators

D2.2 - Initial technical specifications and preliminary design of
BIGG Architecture building blocks

01/12/2021

 67

V. CONCLUSIONS

This document has presented the initial technical specifications and preliminary design of the
BIGG architecture building blocks. This work has leveraged outputs of the deliverable 6.1 that
has technically studied the pilots’ use cases and that has emphasised the fact that a cloud-
only solution shall not be the only target of a BIGG Reference Architecture. In fact, if we want
the BIGG architecture and more widely the BIGG components to be exploited and deployed,
during and after the project, the BIGG components integration options must be versatile.

The first section of this document has presented a technical approach to ensure modularity
and versatility of BIGG software components. It has proposed to structure the code of the
BIGG components in different layers: (1) the business logic core, embedded in (2) an exposing
interface (CLI, Web service or event messaging) which is (3) constrained using Docker
technology. The components codes and deployment artifacts need to be centralized in a
repository shared among users. Every user is then able to pull the components versions that
fits the best his local architecture and update the components for future shared improvements.

The second section has presented a Reference Architecture Framework (RAF) describing
state-of-the-art techniques to coordinate BIGG components, may the actual architecture
deployment be local (on client’s infrastructures) or in the cloud (on centralized shared
infrastructures). BIGG possible pipelines were described where information flow from data
acquisition to knowledge exposition once the data analysis has been performed on
harmonised data by dedicated WP5 components.

Finally, the last section has pragmatically described the planned instantiation of a first BIGG
reference architecture for the different BIGG business cases. It has explained which BIGG
components will be used by each partner for the first version of the platform implementation.

Indeed, Big Data heterogeneous use cases are complex to harmonize in a single architecture,
and it is mandatory to confront architecture envisioned options with the business reality of the
different consortiums’ partners. The first pragmatic implementation of the BIGG concepts in
every pilot site will provide an experience which will lead to the update of the BIGG RAF
presented in this document.

