

Sensitivity: Company

This project has received funding from
the European Union’s Horizon 2020
research and innovation programme
under grant agreement No 957047.

H2020-LC-SC3-EE-2020-1/LC-SC3-B4E-6-2020

Big data for buildings

Building Information aGGregation, harmonization and analytics platform

Project Nº 957047

D2.3 - Final technical specifications and description
of the integrated BIGG solution

 Responsible: CSTB

 Document Reference: D2.3

 Dissemination Level: Public

 Version: 1.0

 Date: 30/11/2023

Ref. Ares(2023)7852442 - 17/11/2023

D2.3 - Final technical specifications and description of the integrated BIGG solution

 2

Sensitivity: Public

Contributors Table

DOCUMENT
SECTION

AUTHOR(S) CONTRIBUTOR(S) to
results

REVIEWER(S)

Section I, V Nicolas Pastorelly, Alan
Redmond, Bruno Fies
(CSTB)

N.A. Laura El Jaouhari
Balán, María Pérez
Ortega (Inetum),

Chris Develder
(IMEC)

Section II Nicolas Pastorelly, Alan
Redmond, Bruno Fies
(CSTB)

Mario De Marco, Adelfio
D’Angiò, Pasquale La Pietra
(Intuicy)

Nico Vermeir, María
Pérez, Théa Gutmacher,
Jarne Kerkaert (Inetum
BE)

Laura El Jaouhari
Balán, María Pérez
Ortega (Inetum),

Chris Develder
(IMEC)

Section III Nicolas Pastorelly, Alan
Redmond, Nicolas Bus,
Guillaume Picinbono, Audrey
Bouet, Gerson Jean-Baptiste
(CSTB)

Mario De Marco, Adelfio
D’Angiò, Pasquale La Pietra
(Intuicy)

Stoyan Danov, Eloi Gabaldon
(CIMNE)

Nico Vermeir, María
Pérez, Théa Gutmacher,
Jarne Kerkaert, Sampath
Mukherjee (Inetum BE)

Pierre Lehanneur,
Riccardo De Vivo,
Frederic Wauters
(Helexia/Energis)

Laura El Jaouhari
Balán, María Pérez
Ortega (Inetum),

Chris Develder
(IMEC)

Section IV

Pierre Lehanneur, Riccardo
De Vivo, Frederic Wauters
(Helexia/Energis)

Mario De Marco, Adelfio
D’Angiò, Pasquale La Pietra
(Intuicy)

Stoyan Danov , Eloi
Gabaldon, Jordi Carbonell
(CIMNE)

Stratos Keranidis,
Polychronis Symeonidis
(domX)

Nicolas Pastorelly, Alan
Redmond, Bruno Fies
(CSTB)

Laura El Jaouhari
Balán, María Pérez
Ortega (Inetum),

Chris Develder
(IMEC)

D2.3 - Final technical specifications and description of the integrated BIGG solution

 3

Sensitivity: Public

Table of Contents

I. INTRODUCTION ... 8

II. TECHNICAL APPROACH ... 9

II.1. Vision ... 10

II.2. Distribution mechanism... 12

II.3. General guidelines for components ... 12

II.3.1. CLI integration guidelines .. 12

II.3.2. Web service integration guidelines .. 13

II.3.3. Event stream messaging system (Kafka) integration guidelines .. 13

II.4. BIGG components versatile integration options .. 18

III. RAF – REFERENCE ARCHITECTURE FRAMEWORK 21

III.1. Big data key concepts... 21

III.1.1. Definition ... 21

III.1.2. Layers ... 23

III.1.3. Lambda and Kappa Architecture .. 24

III.2. BIGG RAF description... 26

III.2.1. The concept of harmonized data .. 26

III.2.2. RAF overview ... 26

III.2.3. RAF connectivity: Message Broker .. 27

III.2.4. RAF description .. 28

III.3. RAF components explained ... 32

III.3.1. Ingestor Components ... 32

III.3.2. Harmonization components .. 37

III.3.3. AI toolbox : Data processing/analysis components .. 49

III.3.4. Output layer components ... 58

III.3.5. Integration Layer Components ... 59

IV. DEMONSTRATIONS IMPLEMENTATIONS ... 64

IV.1. Unified big data demonstration (Catalonia Spain) .. 64

IV.2. Building utility demonstration (Business cases #4 and #5 in Athens) 68

IV.3. Gas & electricity demonstration (Business case #6 in Greece) ... 72

V. CONCLUSIONS ... 78

D2.3 - Final technical specifications and description of the integrated BIGG solution

 4

Sensitivity: Public

Table of Figures

Figure 1) BIGG components flavors, distribution mechanisms and deployment 11

Figure 2) Kafka ecosystem .. 14

Figure 3) Kafka partitioning ... 15

Figure 4) Kafka offsets management ... 15

Figure 5) Kafka consumer groups ... 16

Figure 6) Kafka rebalancing policy .. 16

Figure 7) Example of a custom BIGG components integration solution 20

Figure 8) Big Data 5 Vs ... 21

Figure 9) Big Data architecture layers ... 23

Figure 10) Big Data Lambda architecture .. 24

Figure 11) Big Data Kappa architecture ... 25

Figure 12) BIGG RAF overview ... 26

Figure 13) 3 fundamental service archetypes for a Big Data architecture 28

Figure 14) Overview of BIGG reference architecture ... 30

Figure 15) Ingestor artefact ... 33

Figure 16) BIGG ingestor open-api parameter details ... 35

Figure 17) General workflow of the Harmonizer module .. 38

Figure 18) OBDA concept in the context of BIGG .. 39

Figure 19) Sample of JSON file describing building structure. ... 41

Figure 20) Geonames provides universal IDs and descriptions for public buildings. 42

Figure 21) Sample of one of the BIGG taxonomies classifying building space usages 42

Figure 22) Example of JSON time series with no context .. 43

Figure 23) Five Star Scheme suggested by Tim Berners-Lee ... 43

Figure 24) Example of a JSON input file with the corresponding RML mapping 44

Figure 25) V2 version of the architecture of the ingestion/harmonization process 46

Figure 26) Harmonizer artefact .. 47

Figure 27) Main components of a BIGG Harmonizer ... 48

Figure 28) Output layer consumer components positioning in the RAF architecture 58

Figure 29) API gateway component .. 59

Figure 30) API gateway component technical implementation ... 60

Figure 31) Commander component ... 62

Figure 32) Example of a choreographed flow in the BIGG RAF 63

Figure 33) Example of an orchestrated flow in the BIGG RAF ... 63

Figure 34) CIMNE ENMA big data infrastructure ... 64

D2.3 - Final technical specifications and description of the integrated BIGG solution

 5

Sensitivity: Public

Figure 35) Spanish pilot unified BIGG RAF implementation overview 66

Figure 36) Spanish pilot demonstration workflow .. 67

Figure 37) BC4 and BC5 High level architecture diagram ... 69

Figure 38) Example of cross-validated pipeline ... 70

Figure 39) UC 14 High level data architecture diagram of the solution with the corresponding
tools/resources that is used. .. 72

Figure 40) High level Architecture diagram for Use Case 15 – Natural Gas 76

D2.3 - Final technical specifications and description of the integrated BIGG solution

 6

Sensitivity: Public

List of Tables

Table 1: BIGG sample integration options ... 19

Table 2: Data preparation Modules, their decriptions, their availability & usage 52

Table 3: Functional blocks and descriptions of data transformation modules of AITB 53

Table of Acronyms and Definitions

Acronym Definition

AHU Air Handling Unit

AI Artificial Intelligence

AITB BIGG AI Toolbox (see § III.3.3.)

API Application Programming Interface

BDHF BIGG Harmonized Format (BHF)

BMS buildings management systems (BMS)

BPMN BPMN is the chosen notation to represent the UCs. Business Process Model
and Notation (BPMN) is the standard for business process modelling. It is
provided by the Object Management Group (OMG).

CLI Command Line Interface (aka “terminal”)

CMMS Computerized maintenance management systems

DEEP De-Risking Energy Efficiency Platform

DHW Domestic Hot Water

DR Demand Response (DR)

DSF Demand Side Flexibility

ECM Energy Conservation Measure

EEM Energy efficiency measures (EEM)

EFFIG Energy Efficiency Financial Institution Group

EPC Energy Performance Certificate

EPCo Energy Performance Contract

ES ECMS Energy Conservation Measures (ECMs)

ESCO Energy Service Company

ETSI European Telecommunications Standards Institute

EUBSO Eeuropean Union Building Stock Observatory

GDPR General Data Protection Regulation1

HVAC Heating Ventilation and Air Conditioning

1 https://gdpr-info.eu/

D2.3 - Final technical specifications and description of the integrated BIGG solution

 7

Sensitivity: Public

INSPIRE The INSPIRE Directive, establishing an infrastructure for spatial information in
Europe to support Community environmental policies, and policies or activities
which may have an impact on the environment entered into force in May 2007.

INSPIRE is based on the infrastructures for spatial information established and
operated by the Member States of the European Union. The Directive addresses
34 spatial data themes needed for environmental applications. See
https://inspire.ec.europa.eu/

JSON JavaScript Object Notation

LD Linked-Data2

OBDA Ontology-Based Data Access

OSS Open-source software

OWL Web Ontology Language

R2RML RDB to RDF Mapping Language

RAF Reference Architecture Framework

RDF Resource Description Framework

RES Renewable Energy Source

RML RDF Mapping Language

SAREF Smart Applications REFerence ontology

Service Services are processes (whatever is their level) that are mainly intended to be
available outside BIGG and are used by external applications consuming them
to implement their own actions.
Note that nothing forbids some of the BIGG own processes to consume such
services.

UC Use Case. In this document, the various use cases mentioned are taken from
the D6.1 and detailed according to a chosen formalism.

W3C World Wide Web Consortium

XML Extensible Markup Language

2 https://www.w3.org/wiki/LinkedData

D2.3 - Final technical specifications and description of the integrated BIGG solution

 8

Sensitivity: Public

I. INTRODUCTION

The BIGG project aims at demonstrating the application of big data technologies and data
analytic techniques for the complete building life cycle of more than 4000 buildings in 6 large-
scale pilot test beds. The proposed solutions will be deployed and tested cross pilot and
country validation of at least two business scenarios in Spain and Greece.

The BIGG project achieves its targets by: (1) The Open Source BIGG Data Reference
Architecture 4 Buildings for collection/funnelling, processing and exchanging data from
different sources (smart meters, sensors, BMS, existing datasets); (2) An interoperable
buildings data specification, BIGG Standard Data Model 4 Buildings, based on the combination
of elements from existing frameworks and EC directives, such as SAREF, INSPIRE, BIM,
EPCHub that will be enhanced to reach full interoperability of building dates; (3) An extensible,
open, cloud-compatible BIGG Data Analytics Toolbox of service modules for batch and real-
time analytics that supports a wide range of services, new business models and support
reliable and effective policy-making.

The goal of this document is to present the technical specifications and design of BIGG
Architecture building blocks. As one of the main deliverables of the WP2, it presents the overall
description of the elementary BIGG components and it describes the architectural possibilities
to use and organize these components. These components are software units with well-
defined purposes such as retrieving data, transforming data, analyzing data or coordinating
data flows.

One of the key findings of BIGG is that, to fulfil all requirements from pilots, the BIGG
architecture should not be exclusively a cloud-based system. The proposed solution must be
modular and flexible in terms of BIGG components deployment choices. Actually, BIGG
components must be deployable locally on partners infrastructures where BIGG components
can be close to the place where the data that will be exploited resides. Therefore, the BIGG
technical specifications specify a “pick and choose” system with components that end-users
may take and deploy individually. Architectural guidelines describe state-of-the-art ways to
organize these components’ interactions.

The document is organized in the following manner:

▪ The first section (§II) presents the technical approach to ensure modularity and versatility
of BIGG software components.

▪ The second (§III) section presents the Reference Architecture Framework (RAF),
describing state-of-the-art techniques to coordinate BIGG components, where the actual
architecture deployment be either local (on client’s infrastructures) or in the cloud (on
centralized shared infrastructures). In this chapter different categories of BIGG
components are introduced to manage processes such as ingesting data, harmonizing
data, analyzing and improving data, exposing data to external systems, or organizing BIGG
pipelines.

▪ The final section (§IV) describes the actual instantiation of the BIGG reference architecture
for the different BIGG business cases implemented during the project. This chapter
explains which BIGG components were used by the solution-providers and how they were
technically integrated to build the targeted solutions.

D2.3 - Final technical specifications and description of the integrated BIGG solution

 9

Sensitivity: Public

II. TECHNICAL APPROACH

This chapter defines the overall BIGG technical architecture choices made regardless of the
BIGG components specific internal logics.

These technical choices are the result of a comparative analysis of practical options based on
the former experience and the technical background of the involved partners. The analysis has
been driven by several concerns:

▪ To be able to deliver BIGG framework composed of reusable components in a form that
makes their deployment as versatile as possible on the various envisioned IT
environments,

▪ To allow diverse ways of integrating BIGG components, based on what has been
observed as current working methods and planned usages.

Three distinct ways of using software components to be delivered by BIGG project have been
identified while analyzing the current practices of the partners with respect to data collection
and analysis:

1. BIGG components can be used from the CLI. This exposition method is quite a
common technique for chaining tools to assemble data processing pipelines where
tools’ inputs and outputs are inter-connected by the means of data files exchanges.

2. BIGG components can be used as online services by providing a webservice API.
This is a widespread practice when the involved processes require heavy
computational resources, not available on the end-users’ information systems.

3. BIGG components can be used via event stream messaging or message queuing
systems. This is the best suited solution to create a BIG DATA architecture able to
process live events when required.

This means that components should be distributed in 3 flavors:

- A CLI stand-alone tool consuming and/or producing data files and configured by
options;

- A Web service exposing a REST (Representational State Transfer) API;

- An event stream messaging system compatible node: In the context of big data
management use cases, event stream messaging systems are more relevant to be
used than message queuing (MQ) systems. In the BIGG project, the Kafka event
stream messaging system will be used for the Reference Architecture Framework.
Compatible components must thus be publishers (aka “producers”) and/or subscribers
(aka “consumers”) that can connect to the Kafka message bus.

It must be noted that these 3 forms are agnostic to the programming language used to develop
the end-user applications or services leveraging the BIGG framework components.

D2.3 - Final technical specifications and description of the integrated BIGG solution

 10

Sensitivity: Public

II.1. Vision

A problem encountered frequently when deploying software in an existing environment is its
compatibility with the host OS (Operating System) as well as with the installed services and
software libraries. For instance, an application can have a dependency on a piece of software
that already has been installed on the target system, but with a version not compatible with
what is expected. Installing it without updating the dependency will result in a non-working
application. Updating the dependency incurs a high risk to break other parts of the system.
This is known as the “dependency hell” in the software development community.

The easiest way to solve this problem is to use the containerization technology popularized
by Docker.3 Very briefly, this is a form or virtualization, but without the overhead of stacking a
guest OS over the host OS. Containers provide an isolated environment in which applications
are packaged with their own dependencies and executed without interacting with conflicting
ones that might be present on the host system already.

The technical artefact at the heart of Docker based deployments is the image. It is a kind of
disk snapshot containing the code to be executed in a container.

It must be noted that such images can package long running code such as a server as well as
single shot code such as a tool processing a data file. Container technology is thus equally
suited for the 3 flavors of distribution presented above.

One option for supporting the concept of "component flavors" introduced earlier is to package
the business logic of the process as a shared library which entry-points are called from the
code wrapping it either as a CLI tool, as a Web service or an event messaging compatible
component.

NB: It is not mandatory to code all versions of the wrapped components: involved development
teams are free to choose the technical implementations that best suit the pilots’ requirements
and constraints.

3 https://www.docker.com/

D2.3 - Final technical specifications and description of the integrated BIGG solution

 11

Sensitivity: Public

Figure 1) BIGG components flavors, distribution mechanisms and deployment

Figure 1) summarizes technical solutions to manage and share BIGG components among
consortium partners:

1. For every business subject handled by BIGG (e.g., ingesting data, harmonizing data,
analyzing and improving data, etc., see §III.3.), business logic software must be created.
These business logic holds the added value mechanisms and features that have been
created by BIGG developers specific to the business case at hand. These “low level” codes
must be shared among the consortium's developers so that the code can be commonly
improved, reviewed and updated in the future. These business codes usually use
dedicated technologies and frameworks or libraries (e.g., Python + Pandas, R + ggplot2)
to offer a software solution to a business case.

2. Business logic code can be wrapped in different interface-implementations, where options
depend on the possible targeted deployments. The three options are to get business code
accessible through CLI APIs, a web service REST API, and/or an event message
compatible interface. For the latter point, the Kafka even streaming message system has
been chosen.

3. For easiest deployments, may it be in the cloud or on local systems, the created wrapped
components must be provided as Docker images. This point is very important to ensure
that the components are packaged in such a way that their deployment will be “frictionless”
on any targeted system.

4. The different “flavors” of the components must be published to a BIGG images registry
where every partner will be able to retrieve the shared assets depending on their
requirements, see §II.2.

5. Depending on each business case, components in different required flavors will be stored
in the repository. The business logic code holds the added value processes that have been
designed in the BIGG project. This code needs to be shared in the repository too.

D2.3 - Final technical specifications and description of the integrated BIGG solution

 12

Sensitivity: Public

Depending on what is required by each partner, versions of specific wrapped components
can be created and shared, same thing for the dockerized versions of a specific service.

6. Finally, every partner implementing real-world business cases will be able to retrieve the
required versions of specific BIGG components to deploy and integrate them in specific
infrastructures using the BIGG RAF (see III.2.) or implementing a custom way to integrate
them (see II.4.).

II.2. Distribution mechanism

A straightforward way to make images produced by contributors available to potential users is
to host them on the container registry available on GitLab4 for instance. This way, the
repository used for the source control management of the component provides its deployment
source at the same time. Running an image is then achieved with the docker run command

once the local configuration has been set to include the URL to the image registry.

II.3. General guidelines for components

As introduced above, the components are expected to be available as CLI tools and/or as Web
services exposing a REST API and/or Kafka compatible components.

Common practices for passing data and returning results are expected to be followed so that
their consumers do not need to adapt to every individual choice made by the component
providers. Respecting this guideline also brings the benefit of exposing a coherent and
homogenous interface looking more industrial.

II.3.1. CLI integration guidelines

Command line interface5 tools are expected to use:

• positional arguments by default for identifying datasets (both input and output).

• options for the process configuration parameters. Sensitive defaults should be supported
for the options to simplify the command for commonly encountered use cases.

Example:

$ bigg-tool /path/to/inputfile1 /path/to/inputfile2 /path/to/ouputfile \

 --option1 foo –option2 bar

If the tool uses a single input dataset, it can be convenient to support piping from the stdin
stream, allowing the end-user to build processing chains. In this case, producing the output to
the stdout stream is expected too. Discriminating between the "file paths" and "standard

streams" use cases can be achieved by reserving the positional arguments for datasets and
use options for the rest. The decision is then based on the presence of the positional
arguments or not. Mixed cases can be supported by using the "-" (dash) in place of a file path,
but this is not mandatory.

An additional motivation for supporting standard streams is that it also brings the benefit of
parallelizing processes invoked in the chain and not using the disk storage for the intermediate
data if they are not to be kept. Both side-effects provide a noticeable performance boost for
the execution of the whole chain, especially when high volumes of data are involved.

4 At the time this document is written it is not decided yet if the entire BIGG repository will be publicly
available or not. If the repository is restricted it will be at least accessible upon request.

5 https://en.wikipedia.org/wiki/Command-line_interface

D2.3 - Final technical specifications and description of the integrated BIGG solution

 13

Sensitivity: Public

If standard streams are supported, care must be taken that progression messages printed by
the process are written to stderr (and not to stdout) so that they don't end up in the captured

data.

Exit codes must conform to the common practices of *nix systems, 0 meaning "successful
command" and anything else meaning that either an error occurred during the process, or the
command was invalid (missing required parameter, not existing file…)

CLI tools must provide the standard –h/--help option to display a usage notice the same way

*nix commands do. External links to detailed documentation can be included in the returned
text if relevant. They --version option should also be implemented to make consuming

processes able to check it if needed.

II.3.2. Web service integration guidelines

Since the process will use most of the time complex inputs and datasets, its execution must
be handled by a HTTP POST request what body contains the parameters encoded as
multipart/form-data. 6 If no dataset is to be passed, the application/x-www-form-
urlencoded7 format can be used since it is more compact. In this case, it must be clearly

stated in the specification of the tool, but this is not encouraged since it adds a burden on the
end-user's side and does not bring a noticeable benefit to performance, considering the
generally small size of the involved inputs.

When the process is expected to return a dataset, it must be the content of the response body
and the Content-Type header8 of the response must be set to reflect its type. Response

custom headers can be used if additional information is to be passed. They MUST be clearly
documented in this case.

The status (success or failure) of the request must use the standard HTTP status codes,
namely 200 for a successful execution, 400 for an invalid request, 422 for a processing error
caused by the input data and parameters provided by the request. The 500-status code must
be reserved for unexpected server errors.

To make tools as self-documenting as possible, the Web service version is expected to
implement the request GET /help returning the usage information. External links to detailed

documentation can be included in the returned text if relevant. The version should also be
returned in plain text as the response to the GET /version request.

II.3.3. Event stream messaging system (Kafka) integration
guidelines

II.3.3.a. Key concepts
Kafka9 project was started at LinkedIn and become open source later on in 2011. Since then,
it has evolved and established itself as a standard tool for building real-time data pipelines.
The official documentation defines it as a “distributed streaming platform” and says it is similar
to enterprise messaging system. Kafka has three main components:

1. Producer

6 https://developer.mozilla.org/en-US/docs/Web/HTTP/Methods/POST

7 https://developer.mozilla.org/en-US/docs/Web/HTTP/Methods/POST

8 https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Type

9 https://kafka.apache.org/

D2.3 - Final technical specifications and description of the integrated BIGG solution

 14

Sensitivity: Public

2. Broker

3. Consumer

The “producers” are client application sending some messages. The “brokers” receive these
messages from publishers and store them in the message log. The “consumers” read the
message records from the brokers and persist them, as an example, in some repository like
Cassandra, HBase, MongoDB, etc.

Over the years, a set of applications was built around Kafka to compose a whole ecosystem:

Figure 2) Kafka ecosystem

As presented in Figure 2) a “cluster” represents a set of brokers running in a group of
computers. Kafka exposes stream processing API used by the “processors” and, moreover, it
is possible to integrate other stream processing frameworks on top of it like Spark or Storm.
The “connectors” are tools used to import data from databases into Kafka or export data from
Kafka to databases. These are not just out of the box connectors but also a framework to build
specialized connectors for any other application. Before implementing the integration with
Kafka, it is necessary to clarify some key concepts of this message broker:

• Producer
The “producer” is an application sending messages to Kafka. Each message is defined
in Kafka as a “record”. A record could be a simple string or a complex object. Kafka is
completely agnostic from the record format: for it is a simple array of bytes.

• Consumer
The “consumer” application receives messages from the broker in a poll loop waiting
for them. In Kafka there is the concept of “commit” to notify the broker the messages
are received and processed correctly.

• Broker
Kafka is defined as a message broker because it acts as an intermediary between the
producers sending messages and consumers receiving them. Notably, producers and
consumers are not directly connected: Kafka offers a loosely coupled integration
architecture.

• Cluster
Generally, a cluster is a group of computers acting together for a common purpose.

D2.3 - Final technical specifications and description of the integrated BIGG solution

 15

Sensitivity: Public

This is the same for Kafka: deployed in a distributed system, each computer is
executing one coordinated instance of the broker.

• Topic
It is an arbitrary unique name given to a data stream that comprises all messages its
producers send and its consumers subscribe to.

• Partition
A topic can contain a huge amount of data. Storing and processing such quantity of
data can be scaled by dividing all the messages sent to a topic over multiple “partitions”.
As an example, a Kafka cluster can organize and distribute each topic partition on a
different computer. The number of topic partitions is determined by the user, Kafka is
not involved in this decision. Different configurable criteria can be used to divide
messages among the partitions: range, hashing, round-robin, etc.

Figure 3) Kafka partitioning

• Offset
The “offset” is simply the sequence number Kafka attributes to each message in a
partition. This number is immutable and for the first message in a topic is zero and then
is incremented by 1 for the next message and so on. The offset is local to a partition
and is not globally indicating a message across the cluster. So, to directly identify a
message it is necessary to know: the topic name, the partition number and the offset
number. The offset allows the consumer to “commit” the exact message received,
allows Kafka handle correctly the message sequence and allows operators to shift the
current offset that Kafka is about to process to rewind the message sequence.

Figure 4) Kafka offsets management

• Consumer Group

If the partitioning of a topic is a mechanism to assure scalability to the side of the
producers, the possibility to organize groups gives scalability to the side of the
consumers. In each group there could be instantiated more consumers to share the
workload, each component of a group consuming messages from a different set of
partitions. Usually, consumers doing the same work belong to the same consumer
group and they must be fewer than the topic partitions: the consumers in excess will
not receive any message and they will be eventually used as backup.

D2.3 - Final technical specifications and description of the integrated BIGG solution

 16

Sensitivity: Public

Figure 5) Kafka consumer groups

Moreover, Kafka adopts a rebalancing policy when the partitions are more than the consumers
in a group as shown in Figure 6):

Figure 6) Kafka rebalancing policy

II.3.3.b. CLI
In Kafka installation home directory, the “bin” folder contains some useful commands:

CREATE TOPIC

kafka-topics.sh --zookeeper localhost:2181 --create --topic <topic name> --

partitions 1 --replication-factor 1 --config <configuration>

DESCRIBE TOPIC

kafka-topics.sh --zookeeper localhost:2181 --describe --topic <topic name>

DELETE TOPIC

kafka-topics.sh --zookeeper localhost:2181 --delete --topic <topic name>

LIST ALL TOPICS

D2.3 - Final technical specifications and description of the integrated BIGG solution

 17

Sensitivity: Public

kafka-topics.sh --zookeeper localhost:2181 --list

FOLLOW TOPIC ON THE CONSOLE

kafka-console-consumer.sh --bootstrap-server localhost:9092 --topic <topic

name> --from-beginning

DESCRIBE CONSUMER GROUP

kafka-consumer-groups.sh --bootstrap-server localhost:9092 --describe --

group <consumer group name>

SET THE OFFSET TO A CONSUMER GROUP

kafka-consumer-groups.sh --bootstrap-server localhost:9092 --group <consumer

group name> --topic <topic name>:<partition> --execute --reset-offsets --to-

offset 1636

kafka-consumer-groups.sh --bootstrap-server localhost:9092 --group <consumer

group name> --topic <topic name>:<partition> --execute --reset-offsets --to-

latest

II.3.3.c. CODE
The examples included in this section use Java language. Kafka clients are available for a
large panel of programming languages. For instance, Python users can head to kafka-

python,10 which is among the most popular ones.

II.3.3.c.1. Producer

A “producer” could be implemented with very few lines of code:

// istantiate a producer

KafkaProducer<String, Object> producer = new KafkaProducer<String,

Object>(<producerPropertiers>);

// instantiate a record

ProducerRecord<String, Object> record = new ProducerRecord<String, Object>(topic,

partition, timestamp, key, data, headers);

// send a record optionally with a callback

producer.send(record, <optional callback>);

II.3.3.c.2. Consumer

A “consumer” must implement a poll loop in a thread to keep waiting for batch of records
coming from the broker, a possible pseudo-code implementation could be:

// define consumer

KafkaConsumer<String, byte[]> consumer = new KafkaConsumer<>(consumerProperties);

10 documentation: https://kafka-python.readthedocs.io/en/master/

D2.3 - Final technical specifications and description of the integrated BIGG solution

 18

Sensitivity: Public

// map of offset to be committed to the broker (to empty on each poll)

Map<TopicPartition, OffsetAndMetadata> toCommitMap = Maps.newHashMap();

// subscribe to list of topics or a pattern

consumer.subscribe(topics);

[...]

<poll loop>

ConsumerRecords<String, byte[]> records = consumer.poll(pollTimeout);

// record loop

for (TopicPartition partition : records.partitions()) {

List<ConsumerRecord<String, byte[]>> partitionRecords = records.records(partition);

for (ConsumerRecord<String, byte[]> record : partitionRecords) {

// consume record

[...]

// prepare for commit up to this record

long lastOffset = partitionRecords.get(partitionRecords.size() - 1).offset();

toCommitMap.put(partition, new OffsetAndMetadata(record.offset() + 1));

// commit map

consumer.commitSync(toCommitMap);

[...]

II.4. BIGG components versatile integration options

The 3 BIGG components distribution mechanisms proposed in previous chapters imply
different technical options to provide input and output data to these components. Table 1
presents the different input and output possibilities depending on the chosen distribution
system as soon as the components are dockerized:

D2.3 - Final technical specifications and description of the integrated BIGG solution

 19

Sensitivity: Public

 INPUTS OUTPUTS #

CLI

(Via environment variables)
Shared external storing
systems reference as input

Shared external storing systems
reference as output

1

command line arguments 2

STDIN (File stream) STDOUT (File stream) 3

Mounted folder containing
input files

Mounted folder containing output files 4

Webservice Webservice API call Webservice API response 5

Event stream
messaging
system

Input messages Output messages 6

Table 1: BIGG sample integration options

1. A dockerized component exposing a CLI interface can use environment variables to share
connection to external persistent storing systems like databases. Reference to external
storage system can then be away to share input and output data for BIGG components.

2. A dockerized component exposing a CLI interface can use command line arguments to
provide input data do BIGG components. Command line inputs contain variables providing
data to be processed by the component.

3. In computer programming, standard streams are interconnected input and output
communication channels between a computer program and its environment when it begins
execution. The three input/output (I/O) connections are called standard input (STDIN),
standard output (STDOUT) and standard error (stderr).11 A dockerized component exposing
a CLI interface can use STDIN to get input data as a stream and provide outputs to
STDOUT as a stream.

4. A dockerized component exposing a CLI can use the shared folder mounting feature of
docker to share a directory that could be used to get input files and provide output storage
for result files created by the process.

5. If a dockerized component is using a web service front end to expose services proposed
by the component, then a REST API request (via HTTP POST/GET/PUT…) can be used as
an input while the standard HTTP response can be used for the output of the service.

6. In the case where a dockerized component is using an event stream messaging system, then
the messaging protocol proposed by the event stream messaging system can be used to
provide input data to the component, the component can use the messaging protocol to
provide output information to the system (e.g see Kafka concepts in section II.3.3.).

It must be said that components exposing web services or using event stream messaging
systems can be triggered through an HTTP request or a message event with parameters but
can still use a shared resource like a shared database or shared folders to deal with input
and output data when a huge amount of data is involved in the process. For instance, passing
via a HTTP request a big amount of data to be processed by a micro-serviced component
may not be a robust technical strategy.

11 https://en.wikipedia.org/wiki/Standard_streams

D2.3 - Final technical specifications and description of the integrated BIGG solution

 20

Sensitivity: Public

Here there is a docker exec command describing how a BIGG component could be triggered
via a command line with options to provide input parameters to the service:

EXEC docker run -it --rm <image> <env Variables> <command_and_options> (intputs) | STDIN

With this vision of BIGG components exposing various possible technical interfaces
implementations, different integration options can be envisioned to build processing pipelines.

Figure 7) is an example of different BIGG components integration via a custom integration
mechanism.

Figure 7) Example of a custom BIGG components integration solution

1. A custom integration mechanism calls the first component of a pipeline using STDIN to
provide input information and variables to mount a shared folder using Docker features.
The component outputs are stored in the shared folder as files.

2. The custom integration mechanism gets result files from the shared folder and passes
the shared folder reference (as input for the next component in the pipeline) along with
connection parameters to a shared database. The second component then uses the
shared database to store its results after processing files provided by the first
component in the shared folder.

3. The integration mechanism is triggered by the third component and provides it a
reference to the shared database and extra variables in the CLI input. This component
is generating the result on STDOUT processing data provided as parameter and data
stored in the shared database.

4. The integration mechanism then uses the content provided by the previous component
on STDOUT to push it as a parameter of a REST API call to trigger the next component
which will store his processing results in a shared database.

This fictious sequence is proposed to display how BIGG components expose versatile options
for adaptable pipelines integration. It demonstrates that various methods to handle input data
and output data can be implemented by diverse systems from the simplest one (e.g., a simple
script to chain several components) to the more complex one using an event stream
messaging system and the RAF described in the next Section III.

For instance, some data scientists could use some of the BIGG dockerized components in
direct local integration with tools like Jupyter Notebook12 or Matlab13 via CLI calls.

12 https://jupyter.org/

13 https://www.mathworks.com

https://jupyter.org/
https://www.mathworks.com/

D2.3 - Final technical specifications and description of the integrated BIGG solution

 21

Sensitivity: Public

III. RAF – REFERENCE ARCHITECTURE FRAMEWORK

III.1. Big data key concepts

III.1.1. Definition

Big Data is a complex set of concepts, technologies, frameworks, architectures having a single
simple objective: to manage a big amount of data. Its definition is often based on words starting
with "V"14 and, despite more and more V's have been added over time (up to ten), the standard
definition counts 5 Vs, as sketched in Figure 8)

Figure 8) Big Data 5 Vs

Volume

Big data volume defines the ‘amount’ of data that is produced. The value of data is also
dependent on the size of the data. Today data is generated from various sources in different
formats – structured and unstructured. Some of these data formats include Word and Excel
documents, PDFs and reports along with media content such as images and videos. Due to
the data explosion caused to digital and social media, data is rapidly being produced in such
large chunks, it has become challenging for enterprises to store and process it using
conventional methods of business intelligence and analytics. Enterprises must implement
modern business intelligence tools to effectively capture, store and process such
unprecedented amount of data in real-time.

Velocity

Velocity refers to the speed at which the data is generated, collected and analyzed. Data
continuously flows through multiple channels such as computer systems, networks, social
media, mobile phones etc. In today’s data-driven business environment, the pace at which
data grows can be described as ‘torrential’ or ‘unprecedented’. Now, this data should also be
captured as close to real-time as possible, making the right data available at the right time.
The speed at which data can be accessed has a direct impact on making timely and accurate
business decisions. Even a limited amount of data that is available in real-time yields better
business results than a large volume of data that needs a long time to capture and analyze.

14 Laney, D. (2001), “3-D Data Management: Controlling Data Volume, Velocity and Variety”

D2.3 - Final technical specifications and description of the integrated BIGG solution

 22

Sensitivity: Public

Several Big data technologies today allow us to capture and analyze data as it is being
generated in real-time.

Value

Although data is being produced in large volumes today, just collecting it is of no use. Instead,
data from which business insights are garnered add ‘value’ to the company. In the context of
big data, value amounts to how worthy the data is of positively impacting a company’s
business. This is where big data analytics come into the picture. While many companies have
invested in establishing data aggregation and storage infrastructure in their organizations, they
fail to understand that the aggregation of data doesn’t equal value addition. What you do with
the collected data is what matters. With the help of advanced data analytics, useful insights
can be derived from the collected data. These insights, in turn, are what add value to the
decision-making process. One way to ensure that the value of big data is considerable and
worth investing time and effort into, is by conducting a cost vs. benefit analysis. By calculating
the total cost of processing big data and comparing it with the ROI that the business insights
are expected to generate, companies can effectively decide whether or not big data analytics
will actually add any value to their business.

Veracity

The Veracity of big data or Validity, as it is more commonly known, is the assurance of quality
or credibility of the collected data. Can you trust the data that you have collected? Is this data
credible enough to glean insights from? Should we be basing our business decisions on the
insights garnered from this data? All these questions and more, are answered when the
veracity of the data is known. Since big data is vast and involves so many data sources, there
is the possibility that not all collected data will be of good quality or accurate in nature. Hence,
when processing big datasets, it is important that the validity of the data is checked before
proceeding with processing it.

Variety

While the volume and velocity of data are important factors that add value to a business, big
data also entails processing diverse data types collected from varied data sources. Data
sources may involve external sources as well as internal business units. Generally, big data is
classified as structured, semi-structured and unstructured data. While structured data is one
whose format, length and volume are clearly defined, semi-structured data is one that may
partially conform to a specific data format. On the other hand, unstructured data is unorganized
data and does not conform with traditional data formats. Data generated via digital and social
media (images, videos, tweets, etc.) can be classified as unstructured data. The sheer volume
of data that organizations usually collect and generate may look chaotic and unstructured. In
fact, almost 80% of data produced globally including photos, videos, mobile data, and social
media content, is unstructured in nature.

D2.3 - Final technical specifications and description of the integrated BIGG solution

 23

Sensitivity: Public

III.1.2. Layers

In order to offer all the features promised by its 5 V’s definition, a Big Data architecture is
typically organized in layers, as sketched in Figure 9)

Figure 9) Big Data architecture layers

1) Data Source Layer

The very first step is to collect data both internal and external, in both modalities push and pull,
from different sources (smartphone, networking, sensor, social media, health, etc.) in different
formats (structured or unstructured). The streaming data will be fed into the processing layer,
and the accumulated historical data will be stored in the storage layer, to be further analyzed
with specific analytical tools in the analytical layer, based on the demands from the application
layer.

2) Data Storage Layer

In this layer all the incoming raw data will be stored persistently. Usually, a generic purpose
NoSQL repository is used to agnostically store the messages (Hadoop, MongoDB, etc.)
following a “schema on read” approach, in other words applying a structure to the data only in
the extraction phase. This type of storage is typically called a “data lake” because all the data
sources are pouring content into it like a river in a lake. To retrieve the data stored in the data
lake, its content needs to be enriched with labels and metadata.

3) Data Processing / Analysis Layer

When you want to use the stored data and find out something useful, you will need to process
and analyze it. This layer is responsible for acquiring data from the data lake and, if necessary,
converting it to a format that suits how the data is to be analyzed. The concept of “lakeshore”
is introduced to define a repository containing structured, mapped and organized data, derived
from the raw data contained in the data lake. A lakeshore fits the data model used by the
analysis layer to feed ML modules and to extract statistics, business intelligence, AI models,
etc.

D2.3 - Final technical specifications and description of the integrated BIGG solution

 24

Sensitivity: Public

4) Data Output Layer

This is how the insights gleaned through the analysis is passed on to the people who can take
action to benefit from them. This output can take the form of reports, charts, figures and key
recommendations. Ultimately, your Big Data system’s main task is to show, at this stage of the
process, how measurable improvement in at least one KPI that can be achieved by acting
based on the analysis you have carried out. The consumers can be visualization applications,
human beings, business processes, or services. Real-time analysis can leverage NoSQL
stores (for example, Cassandra, MongoDB, and others) to analyze data produced by web-
facing apps.

III.1.3. Lambda and Kappa Architecture

One of the first generic Big Data reference architecture was designed by Nathan Marz. The
Lambda Architecture15 conceives the "data source layer" as a continuous stream of data that
splits into two separate flows: the "batch layer", that stores all the historical data and pre-
computes the views to be offered to the "serving layer", and the "speed layer" that stream
processes the incoming data and offers a real time view to the "data access layer". This last
has a "strabic" view on the last layers: it accesses both "serving layer" and "speed layer"
merging and collecting the best quality of data according to the different use cases, as
sketched in Figure 10):

Figure 10) Big Data Lambda architecture

An alternative generic reference architecture was successively designed by Jay Kreps. The
Kappa Architecture16 focuses only on data processing as a stream. It is not intended to replace
the Lambda architecture but rather to simplify it. The idea is to manage data processing in real
time and continuous reprocessing in a single flow processing engine. All reprocessing is done
starting from the data stream. This requires that the incoming data stream can be played again
(very quickly), either in its entirety or from a specific point. If there are any changes to the code,
a second processing of the flow proceeds to a new reproduction of all the previous data through

15 https://en.wikipedia.org/wiki/Lambda_architecture and

https://www.oreilly.com/radar/questioning-the-lambda-architecture/

16 http://milinda.pathirage.org/kappa-architecture.com/

https://en.wikipedia.org/wiki/Lambda_architecture
https://www.oreilly.com/radar/questioning-the-lambda-architecture/
http://milinda.pathirage.org/kappa-architecture.com/

D2.3 - Final technical specifications and description of the integrated BIGG solution

 25

Sensitivity: Public

the last engine in real time and to the replacement of the data stored in the service level. This
architecture aims at simplification by maintaining a single code base rather than managing one
for each level, batch and speed, as in the Lambda architecture. Also, queries need to search
in one service location only, rather than accessing batch and speed views, as illustrated in
Figure 11):

For many real-time scenarios, the Lambda architecture is perfect. The same cannot be said
for Kappa architecture. If batch and streaming analytics are at the same level, the Kappa
architecture is probably the best solution. In some cases, however, accessing a complete set
of data in a batch view can lead to a level of optimization that makes the Lambda option more
performing and perhaps even easier to implement.

There are also some extremely complex situations in which batch and streaming algorithms
produce very different results (using machine learning models, advanced systems or naturally
very expensive operations that must be performed differently in real time) that require the use
of Lambda option.

Figure 11) Big Data Kappa architecture

D2.3 - Final technical specifications and description of the integrated BIGG solution

 26

Sensitivity: Public

III.2. BIGG RAF description

III.2.1. The concept of harmonized data

Building energy information gathering techniques have evolved significantly, driven by
technological advancements and concerns about energy efficiency and sustainability. These
technological advancements have enhanced data accuracy and availability, opening new
possibilities for optimizing energy performance and driving sustainable practices in the built
environment. However, the lack of standardization and harmonization of data definitions
across diverse applications and databases poses a critical challenge to realizing these
benefits. The BIGG project recognizes this challenge and endeavors to overcome it by
developing an open-source Big Data Reference Architecture and a BIGG AI Toolbox (AITB)
capable of supporting diverse use cases and applications throughout the building life cycle.
The BIGG project's essence revolves around harmonizing data across various systems
and platforms by harnessing the power of semantic technologies, particularly
ontologies. Ontologies enable a structured and standardized representation of data meaning
and interrelationships in machine-processable formats, fostering common vocabularies and
shared understandings, thereby facilitating seamless data exchange and integration across
heterogeneous systems. An essential principle in BIGG Standard Data Model 4 Building
Ontology17 development is the reuse and alignment of existing ontologies. By building upon
and extending established ontologies in relevant domains, the BIGG project avoids redundant
efforts, while ensuring compatibility and consistency between diverse data sources. Reusing
and aligning existing ontologies create a robust foundation for connecting and relating
heterogeneous datasets, preserving the original context of information.

III.2.2. RAF overview

Using the data harmonization concept, the detailed RAF is presented in the Figure 12)

Figure 12) BIGG RAF overview

In the following description, the numbers will make reference to black numbers in Figure 12).

The RAF comprises a pipeline of several components that can be orchestrated in different
ways, using a message broker is the most effective (see next section). The first step uses
BIGG ingestion modules (1) that are software components to acquire specific data (2) from
different custom sources using standard protocols like HTTP or MQTT for instance (see
§III.3.1.). These ingested data are stored in data lakes for later processing and/or directly

17 https://github.com/biggproject/Ontology

D2.3 - Final technical specifications and description of the integrated BIGG solution

 27

Sensitivity: Public

pushed through an event message bus like Apache Kafka18 to the harmonization module (3).
The harmonization module (see §III.3.2.) is flexible enough to only require a standardized
mapping file (4) to enable conversion of the initial specific data to the BIGG Standard Data
Model 4 Building (5) required as input by the BIGG AI Toolbox (AITB, cf.6).

The data harmonization is the process of bringing data from different sources into a consistent
format, the BIGG Standard Data Model 4 Building Ontology,19 making it easier to analyze and
use. Harmonization is important because it improves data quality, consistency, and integration,
enabling organizations to make better decisions and improve their operations. In the context
of the AITB, data harmonization is essential for the success of data pipelines, which extract
valuable insights and predictions related to building energy consumption and performance. By
ensuring that data inputs into the pipelines adhere to standardized formats and terminologies,
data harmonization enables the pipelines to seamlessly use this harmonized data across
various applications and analysis tasks. Overall, data harmonization is a critical step towards
realizing data-driven excellence and transforming data into an asset that propels an
organization's operations and growth endeavors.

The harmonized data can be stored in “harmonized data lakes” (e.g., triple stores) and/or
directly pushed through an even bus to the toolbox. The BIGG toolbox leverages several data
analytics and AI/ML curated technologies to process the building/energy related data and
produce insights output in the BIGG Standard Data Model 4 Building (7). The Toolbox uses
machine learning techniques to produce valuable predictions (see § III.3.3.). The knowledge
created by the toolbox can be stored in “harmonized lakes shores” and is used by specific
dashboard and external system software components (see 8, § III.3.4.) that will transform
back the harmonized data into the data formats required by external dashboards or systems
(like for instance any building management systems autonomously controlling buildings’
appliances based on BIGG system predictions).

The following sections will describe the RAF elements in more details.

III.2.3. RAF connectivity: Message Broker

Whatever the generic reference architecture to be used, either Lambda or Kappa, it is certainly
not possible to ignore a fundamental element present in both: the message broker. This
software module can be considered as a message-oriented middleware, an intermediary agent
that connects all the applications with each other. In a microservices-based architecture, the
message broker can offer a lot of features:

▪ topic-based message routing with publisher-subscriber pattern

▪ message routing to one or more microservices

▪ message queuing for batch workloads

▪ enhanced and loosely coupled services interoperability

▪ message storage and/or buffering to guarantee delivery

▪ partitioning and load balancing

▪ event-driven choreographed architecture

To use a Message Broker tool, 3 fundamental service archetypes can be identified, illustrated
in Figure 13):

18 https://kafka.apache.org/

19 See D4.2 Description of the final harmonization layer

D2.3 - Final technical specifications and description of the integrated BIGG solution

 28

Sensitivity: Public

Figure 13) 3 fundamental service archetypes for a Big Data architecture

1. Producer

It is a service that publishes a message on a specific topic. As an example, a "producer" could
be a service collecting IoT messages and publishing them on a specific message broker topic.
Such a service is commonly indicated as "ingestor".

2. Processor

A “processor” both consumes a message from a topic and, after some computations or
transformations, produces a message on another topic. A service of this archetype could be
used to harmonize the incoming messages translating them from their original formats in a
“common language” defined by the standard BIGG models.

3. Consumer

This archetype of services consumes message from a topic (or more topics) for different
purposes: to send the message to another service, to persist the message into a repository, to
produce logging or tracing, etc. This kind of services are usually identified as “adapter”.
Consumers subscribe to messages for listening to them and processing the conveyed or
related data on the fly.

III.2.4. RAF description

III.2.4.a. Requirements
In the BIGG project, a participant could have his own IT infrastructure: edge computing
components based typically on IoT hardware like sensors, devices and meters, and a cloud
computing platform probably containing a message broker, a data lake, and one or more
lakeshores so that he could want only to use some of the analytics services offered by BIGG.
Alternatively, a participant could have none or a subset of these elements, needing a platform
that could offer all the BIGG services. Moreover, a participant (or a simple user) may need to
deploy the BIGG solution locally on a development PC for testing purposes, on premise in his
company, or on a shared cloud platform. In some scenarios, a participant could want to use
BIGG as it is, out of the box, in another scenario, instead, he could want to modify and
customize some of its components or to completely replace them.

To meet all these scenarios and requirements, the BIGG RAF must be:

1. Big Data enabled: BIGG RAF must be a Big Data architecture offering its minimal set of
backbone services like a message broker, a data lake and at least one lakeshore.

2. Virtual / Containerized: Virtualization is the best solution to install the BIGG platform in
whatever environment the participants want to. This can be achieved with OS level
virtualization preparing a virtual machine image to run on the proper container (VMware,

D2.3 - Final technical specifications and description of the integrated BIGG solution

 29

Sensitivity: Public

VirtualBox, etc.) or virtualizing every platform component starting from the backbone
(message broker, datalake repository, etc.) up to the single microservice (ingestor,
Harmonizer, etc.) into some single process containers using, as an example, Docker.

3. Pluggable: If a participant wants to use the BIGG platform with a “black box” approach,
then this platform has to expose clearly defined and well documented input / output services.

4. Modular / Composable: A microservices oriented architecture is, by definition, modular
and composable and could offer to the participants the possibility to modify or replace a
single component or to even reorganize the data flow and the business processes by simply
reconfiguring the sequence or the pipeline (i.e. changing input and output topics on the
message broker).

III.2.4.b. Design
The diagram in Figure 14) shows a detailed version of the BIGG reference architecture.

D2.3 - Final technical specifications and description of the integrated BIGG solution

 30

Sensitivity: Public

Figure 14) Overview of BIGG reference architecture

In the top there are grey boxes representing the participants IT infrastructure and in the yellow
box in the bottom is the BIGG RAF. These are its main generic components:

D2.3 - Final technical specifications and description of the integrated BIGG solution

 31

Sensitivity: Public

Ingestor

This microservice is the BIGG platform input. It is a “producer” exposing a REST API to receive
all incoming data and to put them on the message broker proper topic

Controller

The “Controller” is an “adapter/consumer” retrieving all the response data from the dedicated
message broker topic and sending them to the participant IT infrastructure. It is the output of
the BIGG platform.

Message Broker

This component will be the backbone of the whole solution interconnecting all the
microservices to enact a choreographed data pipeline. Apache Kafka could be the proper tool
to use as the message broker.

Harmonizer (see §III.3.2.b.)

Following the “producer” pattern, this microservice will read messages from the message
broker, will translate them in the standard BIGG models and will write the results on the
message broker. It will expose this translation functionality in both directions: from participant
proprietary language to common language and from common language to participant
proprietary language to make the result readable by the third-party external participant system.
As an alternative, this service could be implemented as a Hadoop map-reduce task or as a
Spark streaming job.

DL Adapter and Datalake

An “adapter/consumer” is a service consuming messages from the broker and sending them
to a third-party system, to a repository or to a different outbound. In this case the DL Adapter
is used to persistently store all the messages it retrieves from the broker into the data lake. It
is also used to retrieve the same messages from the data lake. It is, in other word, the interface
used by the BIGG platform to its central repository. For this kind of usage, a generic purpose
repository should fit the needs: HBase on Hadoop or MongoDB.

IM Adapter and IMDG

The speed layer is a critical component. Low latency in memory computations could be useful
for timeseries real time analysis and monitoring. The IM Adapter component will offer an
interface to an in-memory repository capable of processing up to 200,000 transactions per
second. Redis and Hazelcast are two tools that can address this need.

Analytics Toolbox (see §III.3.3.)

This is the very BIGG platform core: a set of services that will add value, quality and insight to
the incoming data:

• Gap detection – to rise alerts

• Outlier detection – to fine-tune the timeseries

• Timeseries filtering – to isolate interesting time or value intervals

• Fourier transform – to obtain a frequency-based domain model

• K-Mean – to group datasets with a fast-clustering algorithm

• Regression – to find correlation between variables

• Weather – to analyze weather data

• Modeling – to compute predictive models and timeseries digital twins

• Validation – to validate datasets and timeseries

D2.3 - Final technical specifications and description of the integrated BIGG solution

 32

Sensitivity: Public

LS Adapter and Lakeshore

As an opposite to the data lake approach, a lakeshore contains an already harmonized,
transformed, eventually aggregated dataset that could be served at once to the analytic
services layer. This adapter will store and retrieve computed data to and from a time-series
specialized repository that could be Apache Cassandra or InfluxDB.

Services as Monitor, Savings, Tracing, etc

Due to the flexibility offered by the microservices architecture and the message broker, it will
be relatively simple to add new services like for monitoring, for tracing, for savings estimation,
etc.

III.2.4.c. Distribution
This architecture will be distributed as a “docker compose” text file listing all the single
component docker image so that at once will be put up and running (as an example):

• Kafka

• Zookeeper (required by Kafka)

• Hadoop

• HBase

• Spark

• The Analytics Toolbox (defined as a “docker compose” in turn)

• All the microservices one by one

In this way it will be quite simple to download from the shared repository and deploy the BIGG
infrastructure on whatever environment the single participant wants to. Moreover, some
relevant components (Ingestor, Controller and Harmonizer) will be distributed in a base
implementation that could be “overridden” (or completely replaced) by a customized
implementation done by the different participants. This sort of “component injection” can be
easily achieved by simply editing the “docker compose” text file.

As described in D2.1 deliverable, there are two families of components mainly:

• Data harmonization components, responsible for converting external data to and from
to BIGG harmonized format aimed at easing the use of tools provided by the platform

• Data analysis components,20 responsible for the heavy lifting job of processing the
incoming data related to energy consumption to produce the KPIs (Key Performance
Indicators) relevant for decision making.

This classification is kept hereafter to help identify commonalities that can emerge.

III.3. RAF components explained

III.3.1. Ingestor Components

III.3.1.a. Overview
The Ingestor is a micro-service responsible to receive inbound transmissions about generic
data, anagraphical data, measurements, events and statuses from field devices, field data-
logger or external services, in order to route this data internally in the system.

20 aka “AI Toolbox”

D2.3 - Final technical specifications and description of the integrated BIGG solution

 33

Sensitivity: Public

The Ingestor must be:

▪ Unsolicited: listening to incoming transmissions and activating itself as reaction to

external activity.

▪ Available: keeping operative as much as possible, limiting at all possible the downtime of

the service

▪ Responsive: responding in a timely manner if at all possible.

▪ Generic and durable: managing incoming transmission in generic way, without claiming

to understand what’s the nature or the content of the transmission; requiring no

implementation and no configuration to receive new types of transmissions, if at all

possible.

▪ Efficient: engaging a minimal amount of computational resources.

▪ Scalable and elastic: allowing more instances of the micro-service to run in the system

on different nodes to (possibly linearly) increase the throughput; making it easy to add,

remove or move instances across the system.

▪ Robust: coping with errors and with erroneous inputs without compromising the operation

of the system.

III.3.1.b. Architecture
The Ingestor is the entrance point for data transmissions coming from the field devices and
external systems. Data are pushed to the "input” topic as soon as possible. From there,
messages are ready to be consumed by the Harmonizer microservice. It is an HTTP based
ingestor, it uses Spring Boot REST. The ingestor also uses Spring Kafka, all properties are
configurable using the present Spring Kafka properties (see Figure 15).

Figure 15) Ingestor artefact

D2.3 - Final technical specifications and description of the integrated BIGG solution

 34

Sensitivity: Public

III.3.1.c. Message Format
The Message Format is the format of all incoming data transmissions. This format is derived
from the Kafka record format and therefore it is compound of:

- Value
a sequence of bytes like those sent on a serial port, contained in a binary file or
transmitted via network interaction. For example, the body of the request received by
the Ingestor

- Type
the type or format of the value field. It is a text string that should unambiguously indicate
how to read the value.

- Key
for each fixed type, the key is a text string identifier of the source of the data message.
The couple (type, key) must be a universal identifier of the source of any data
transmission.

- Metadata
arbitrary textual information about a data message or about its source. Metadata are
structured as a collection of name-value pairs with textual names and textual values.
Names are repeatable. Examples of metadata are:

o encoding=UTF-8: indicating the encoding of the value bytes

o requestId=6651a560-da17-4807-ab4b-ebc01895f1fd: a unique id for the data
message initialized by the ingestor.

o requestTs=2019-07-08T20:01:10.804+02:00: timestamp at which the data
entered the system, initialized by the ingestor.

III.3.1.d. Database
Currently, the Ingestor has no need of a database, thus it has no database.

III.3.1.e. Configuration
The microservice configuration will be written in a YAML format file containing the main
information as:

• Kafka URL as hostname and port (e.g., “127.0.0.1:9092”)

• The path and the port the API will be published on (e.g., “localhost:8888/api/ingestor”)

• Logging parameters as level and loggers (e.g., “level: INFO”)

However, for the ingestor a json file is mostly used.

For more details, please refer to the GitHub: https://github.com/biggproject/WP3-HttpIngestor

https://github.com/biggproject/WP3-HttpIngestor

D2.3 - Final technical specifications and description of the integrated BIGG solution

 35

Sensitivity: Public

Figure 16) BIGG ingestor open-api parameter details

III.3.1.f. Implementation
Two main classes will be implemented for this component:

DatalakeResource: The http end-point receiving http requests from the external world.

KafkaPusher: service able to dispatch messages via Kafka. The name of the topic is dynamic.

D2.3 - Final technical specifications and description of the integrated BIGG solution

 36

Sensitivity: Public

III.3.1.g. API
The Ingestor will offer an http API named “api/datalake”. Receiving external transmissions via
http is the objective of this API. Three ways of http post calls are supported:

 1. Form posts,

 2. Form file posts,

 3. Generic posts.

In the next three paragraphs we are going to see these three equivalent ways more in details.
We assume that the bytes to transmit into the system are the following 54 ASCII characters:

{"ts":1553071755,"ms":"temperature","v":23.6,"u":"°C"}

We also assume that the message needs some metadata to be tracked together with the
message itself and they are the following:

 • IEEE EUI64 identifier: 70B3D54750100052

 • location: 1st floor

 • division: automotive

We will use the IEEE EUI64 identifier as message key, while location and division as
metadata.

III.3.1.g.1. pi/datalake: Form posts

The Ingestor can accept incoming transmissions as form posts. This is the standard way html
forms are submitted, with content-type: application/x-www-form-urlencoded. Here is an
example of how to send data using the curl program:

curl --verbose \

 --request POST \

 --data location=1st-floor \

 --data division=automotive \

 --data-urlencode

payload='{"ts":1553071755,"ms":"temperature","v":23.6,"u":"°C"}' \
https://host.name/ingestor/api/datalake/test-type/70B3D54750100052

III.3.1.g.2. api/datalake: Form file posts

The Ingestor can accept incoming transmissions as multipart form post. This is the standard
way used by html forms with files, with content-type: multipart/form-data. Supposing

that the file /tmp/payload.json contains the JSON document to send, here is an example of
how to send data using the curl program:

curl --verbose \

 --request POST \

 --form location=1st-floor \

 --form division=automotive \

 --form sn=70B3D54750100052 \

 --form dea=faab234875d86b99a1dd8f9afeffa4e7 \

 --form payload=@/tmp/payload.json \
 https://host.name/ingestor/api/datalake/test-type/70B3D54750100052

III.3.1.g.3. api/datalake: Generic posts

The Ingestor can accept incoming transmissions as an arbitrary http post. This is the fallback
method when the content-type is not application/x-www-form-urlencoded neither

mailto:payload=@/tmp/payload.json

D2.3 - Final technical specifications and description of the integrated BIGG solution

 37

Sensitivity: Public

multipart/form-data. In this case metadata must be encoded as http query string parameters in
the URL. Here is an example of how to send data using the curl program:

curl --verbose \

 --request POST \

 --header 'Content-type: application/json' \

 --data '{"ts":1553071755,"ms":"temperature","v":23.6,"u":"°C"}' \

 'https://host.name /ingestor/api/datalake/test-

type/70B3D54750100052?location=1st-

floor&division=automotive&dea=faab234875d86b99a1dd8f9afeffa4e7'

III.3.1.g.4. Inferred message key

In general, the URL to post data to the Ingestor is

https://host.name/ingestor/api/datalake/type/key

Where host.name, type and key are variables. The key in the url is used as key of the message.
The key in the url is optional for the Ingestor. On the other hand, it is not optional for a message.
If the key is not in the URL, in other words, if data are posted to an URL like this:

https://host.name/ingestor/api/datalake/type

then the Ingestor tries to infer the key from the metadata. In fact, the micro-service looks for
metadata with one of these names:

 ◦ sequence,

 ◦ key,

 ◦ sn,

 ◦ id,

 ◦ code,

 ◦ serial.

If such element metadata exists and it is single-valued, then the value is used as key for the
message. Otherwise, a random key is generated.

III.3.1.h. GUI
The Ingestor currently does not need a GUI, thus it has none.

III.3.2. Harmonization components

III.3.2.a. Overview
The Digital Building Twin involves a multitude of data models and formats coming from different
sources such as open data providers, assets management software and sensors. Regarding
data formats, relational data bases and XML are still present, Open Data portals heavily rely
on CSV, and web APIs on JSON. The RDF data model is used as a federated model to reach
semantic interoperability and querying of data having heterogeneous formats.

The BIGG harmonizer aims at converting any data in scope of energy performance of building
that fit with the BIGG ontology into RDF. In our approach we focus on JSON for data coming
from sensors, CSV for data coming from Open Data and Asset Management Software and
RDF for alignment with existing ontologies.

The harmonizer must generate data respectful of W3C recommendations and BIGG ontology
by providing the workflow of functionalities as illustrated in Figure 17):

https://env.energis.com/ingestor/api/datalake/test-type/70B3D54750100052?location=1st-floor&division=automotive&dea=faab234875d86b99a1dd8f9afeffa4e7
https://host.name/ingestor/api/datalake/type/key
https://host.name/ingestor/api/datalake/type

D2.3 - Final technical specifications and description of the integrated BIGG solution

 38

Sensitivity: Public

Figure 17) General workflow of the Harmonizer module

• F1: Converts JSON files into RDF compliant with BIGG ontology.

• F2: Converts CSV files into RDF compliant with BIGG ontology.

• F3: Aligns Data described using standard ontologies covering the same scope
(IFCOWL, SAREF, SSN/SOSA, geoNAMES, QUDT, WGS84, FOAF)

• F4: Allows to map input objects with BIGG classes.

• F5: Allows to map input attributes with BIGG data properties.

• F6: Interprets implicit links between objects through object properties.

• F7: Reconciles input values with open registers, BIGG taxonomies and enumerations.

• F8: Materializes data context.

The following sections provide details about the required functionalities:

Converting input formats to RDF (F1, F2)

JSON (JavaScript Object Notation) is an open standard file format and data interchange format
that uses human-readable text to store and transmit data objects consisting of attribute-value
pairs and arrays. It is a common data format with diverse uses in electronic data interchange.

RDF (Resource Description Framework) is a World Wide Web Consortium (W3C) standard
originally designed as a data model for metadata. It has come to be used as a general method
for description and exchange of graph data. RDF provides a variety of syntax notations and
data serialization formats, with Turtle (Terse RDF Triple Language) currently being the most
widely used notation.

This function outputs data compliant to W3C recommendations and without loss of information.
The compliance of harmonized data is ensured by functionalities F4 and F5. Interoperability of
harmonized data is ensured by functionalities F3, F6 and F7. The quality of output data is
ensured by functionalities F8 and F9.

Converting relational data to RDF on the fly

Ontology-Based Data Access (OBDA) is a popular approach for tackling the challenge of data
integration and query answering over multiple data sources. OBDA provides a conceptual layer
in the form of an ontology that defines a shared vocabulary, models the domain, hides the
structure of the data sources, and enriches incomplete data with background knowledge. In
the BIGG project, the ontology for modeling the buildings/energy domains is the BIGG
Standard Data Model 4 Building Ontology. Users can then pose queries over this high-level
conceptual view, and the OBDA system will translate them into queries over the underlying
data sources.

D2.3 - Final technical specifications and description of the integrated BIGG solution

 39

Sensitivity: Public

Figure 18) OBDA concept in the context of BIGG

One of the key benefits of OBDA is that it allows users to query data sources without needing
to understand the structure of the data sources, the relation between them, or the encoding of
the data. If an OBDA system uses the BIGG ontology to map the BIGG high-level concepts in
the user query to the corresponding data in the underlying data sources, it can be used to
integrate data from a variety of different sources, including relational databases, NoSQL
databases, and XML documents. Thus, aligned with the BIGG project objectives, OBDA
systems can use the BIGG ontology to provide a unified view of the data, regardless of the
underlying data sources.

R2RML, which stands for "RDB to RDF Mapping Language," is a specification and language
used for mapping relational data (typically stored in a relational database) to RDF (Resource
Description Framework) data, which is commonly used in the context of semantic web and
linked data applications. The principle of R2RML is to define a standardized way to create
mappings between relational database schemas and RDF data, making it easier to integrate.
R2RML provides a standardized and flexible way to map relational data to RDF, making it
easier to integrate structured data from relational databases into the semantic web and linked
data environments. These mappings facilitate interoperability and data integration across
different data sources and applications.

In the context of the BIGG project where many relational databases can be used as data
sources, it is interesting to demonstrate an OBDA as a powerful tool for integrating and
querying data from multiple sources because it is particularly well-suited for applications that
require complex queries over large and heterogeneous datasets. For that purpose, a
demonstration of the Ontop21 OBDA system has been added in the BIGG repository to be
shared with the BIGG developers’ community. This is a powerful tool to dynamically query
various databases and generate the BIGG data model directly at the harmonizer level. Ontop
is one of the exiting R2RML implementations, it is an open-source ontology-based mature

21 https://github.com/ontop/ontop

https://github.com/ontop/ontop

D2.3 - Final technical specifications and description of the integrated BIGG solution

 40

Sensitivity: Public

framework22 designed for querying relational databases using ontologies. It offers several
advantages, particularly for those working with semantic web technologies and linked data.
Here are some of the advantages of the Ontop framework:

• Integration of Relational Databases with Semantic Web: Ontop allows you to bridge the
gap between relational databases and semantic web technologies. You can use it to
create a virtual RDF graph representation of your relational database, making it easier
to work with structured data in the context of the semantic web.

• Ontology-Based Querying: With Ontop, you can use ontologies to define the meaning
of your data. This makes it possible to perform ontology-based querying over your
relational data. Queries can be expressed in a query language designed for querying
RDF data.

• SPARQL Compatibility: Ontop is compatible with SPARQL, which is a widely used
query language for querying RDF data. This means that users familiar with SPARQL
can use Ontop to query relational databases without having to learn a new query
language.

• Virtual RDF Graph: Ontop creates a virtual RDF graph that reflects the structure and
semantics of your relational data. This makes it easy to navigate and query your data
as if it were stored in RDF format.

• Reasoning and Inference: Ontop supports ontology reasoning and inference, which
means that it can infer additional facts and relationships based on the ontology. This
can help uncover implicit knowledge in your data.

• Query Optimization: Ontop includes query optimization techniques to improve the
efficiency of query processing, which is crucial for querying large and complex
databases.

• Mapping Configuration: Ontop uses mapping configurations to define how data from
the relational database should be mapped to the RDF model. This configuration allows
for flexibility and customization in how data is represented in the virtual RDF graph.

• Industry Adoption: Ontop has gained recognition and adoption in the semantic web and
linked data communities, and it has been used in various research projects and
applications.

• Open Source: Ontop is open source, which means that it is freely available for use and
can be customized or extended to meet specific project requirements.

Overall, Ontop provides a powerful tool for integrating relational databases into the semantic
web and for leveraging the benefits of ontologies in data querying and reasoning. It is
particularly useful when you want to combine structured data from databases with the flexibility
and expressiveness of semantic web technologies.

Ontop has been installed and configured to ingest a relational database containing descriptions
of buildings, sensors and measurements. The results show that Ontop allow to directly query
the relational database through a SPARQL query. On one way the SPARQL query is translated
on-the-fly into a SQL query and on the way back, the SQL results is converted into RDF results.
The main requirement to settle this process is to build a mapping file -based on R2RML
standard- that describe correspondences between relational entities and graph entities. This
mapping file is coherent with RML mapping files used to convert JSON to RDF as part of RML
overall standard.

22 http://www.semantic-web-journal.net/content/ontop-answering-sparql-queries-over-relational-
databases-1 / https://research.bcgl.fr/pdfs/ontop-iswc20.pdf

D2.3 - Final technical specifications and description of the integrated BIGG solution

 41

Sensitivity: Public

Aligning data (F3)

The BIGG ontology has been aligned with few existing ontologies related to Digital Building
Twin.

BOT23 ontology is a minimal ontology for defining relationships between the sub-components
of a building. It was suggested as an extensible baseline for use along with more domain
specific ontologies following general W3C principles of encouraging reuse and keeping the
schema no more complex than necessary. BIGG defines some classes that are equivalent
(according to OWL) to BOT classes.

SAREF24 is an ontology supported by ETSI SmartM2M standard to achieve interoperability
among IoT projects that can be extended to any IoT vertical domains such as smart buildings
or energy. BIGG ontology reuse few SAREF concepts such as saref:Device, saref:Sensor and
saref:UnitOfMeasure to describe sensors networks and time series.

Interpreting implicit link (F6)

Underlying structures of JSON are arrays and trees. Relations between objects are implicitly
declared by using the native parent-child relation provided by the tree structure. As BIGG
ontology defines several relations the harmonized need to match the parent-child relation
between two JSON objects with one of the BIGG ontology relation. The next schema illustrates
how two parent-child relation from the same JSON file can be interpreted as distinct relations
in the BIGG ontology.

Figure 19) Sample of JSON file describing building structure.

Reconciliating data with enumerations (F7)

In this project geonames is used as a universal Building register. Geonames for building.
Geonames building are reconciliated with BIGG building description by using the building
location. This process allows to federate data provided by the building owner to data provided
by the Open Data community. Figure 20) shows an example of data reconciliation.

23 Mads Holten Rasmussen, Maxime Lefrancois , Georg Ferdinand Schneider , Pieter Pauwels. BOT:

the Building Topology Ontology of the W3C Linked Building Data Group.. Semantic Web –
Interoperability, Usability, Applicability, 2021, 12 (1), pp.143-161. ⟨10.3233/SW-200385⟩

24 http://www.etsi.org/deliver/etsi_ts/103200_103299/103264/01.01.01_60/ts_103264v010101p.pdf

http://www.etsi.org/deliver/etsi_ts/103200_103299/103264/01.01.01_60/ts_103264v010101p.pdf

D2.3 - Final technical specifications and description of the integrated BIGG solution

 42

Sensitivity: Public

Figure 20) Geonames provides universal IDs and descriptions for public buildings.

The BIGG ontology provides taxonomies to classify objects such as buildings, spaces or
sensors. Figure 21) gives an excerpt of the Building usages taxonomy that description the main
service provided by the building.

Figure 21) Sample of one of the BIGG taxonomies classifying building space usages

When building usage classification used by raw data differs from the BIGG classification, the
harmonizer needs to translate from one to the other. For instance, the French building
classification entry “Université” should be converted into its corresponding entry in the BIGG
taxonomy “University”.

Expliciting data context (F8)

When describing energy consumption as JSON time series, the context (Who, Where, How)
is often skipped or implicitly indicated in the file name. The harmonized data need to retrieve
the context (space, building, feature of interest) from the existing database or from other data
sources.

D2.3 - Final technical specifications and description of the integrated BIGG solution

 43

Sensitivity: Public

Figure 22) Example of JSON time series with no context

Generating 5-star data

The Digital Building Twin requires 5-star data as introduced by Tim Berners-Lee25. Most of the
time, raw data collected by the Digital Building Twin must be cleaned and enriched to by fully
interoperable. The five levels defined by Tim Berners-Lee are: available (level 1), structured
(level 2), open (level 3), universally identified (level 4) and linked to other data (level 5).

Level 1 is a requirement. Level 2 is ensured by RDF specification and functionality F1. The
harmonizer ensures level 4 by generating universal by converting local identifier to universal
identifier by using data provider identification and context. Finally, level 5 is ensured by
functionality F6.

Figure 23) Five Star Scheme suggested by Tim Berners-Lee

The harmonizer mapping file

The harmonizer component requires a mapping file to convert custom data into the BIGG
harmonised model. RML26 has been chosen as the harmonizer’s mapping language for two
main reasons: (1) RML is based on RDF, which is consistent with the harmonized data, (2)
RML is an extension of a W3C specification, R2RML27.

The RML mapping file contains rules to be used to transform an input data into an RDF
format.

RML is one of several solutions that have been proposed to map semi-structured data to RDF.
It is an extensible language that can handle a variety of source formats, including JSON, CSV,
and XML. It is also scalable and can be used to map large and complex datasets. Other
mapping languages that were considered for the BIGG project include SPARQL-GENERATE

25 https://5stardata.info/en/

26 Anastasia Dimou, Miel Vander Sande, Pieter Colpaert, Ruben Verborgh, Erik Mannens, and Rik Van
de Walle. RML: A Generic Language for Integrated RDF Mappings of Heterogeneous Data. In
Proceedings of the Workshop on Linked Data on the Web, co-located with the 23rd International World
Wide Web Conference (WWW 2014), Seoul, Korea, 2014.

27 https://www.w3.org/TR/r2rml/

D2.3 - Final technical specifications and description of the integrated BIGG solution

 44

Sensitivity: Public

and OpenRefine. However, SPARQL-GENERATE is not as extensible as RML, and
OpenRefine does not provide access to the CSV-to-RDF mapping mechanism that is enacted
internally.

YARRRML28 is a human-readable mapping language developed by Ghent University, which
allows to define rules and to convert it into RML or R2ML mapping language. In the context of
BIGG, it has been used to ease the process of writing RML mapping files.There is a web-based
version named MATEY, 29 it offers the possibility to write YARRML rules to transform a
specified JSON file into an RDF document, and to generate the corresponding RML rules. In
the case of the BIGG harmonizer, MATEY is used to generate RML rules, exported into a
document, to map them with the dataset of each business case. Then, the RML mapping can
be processed to generate the RDF conversion of the dataset according to the BIGG ontology.
Figure 24) lists an example of a JSON input file with the corresponding RML mapping.

Figure 24) Example of a JSON input file with the corresponding RML mapping

28 https://rml.io/yarrrml/spec/https://rml.io/yarrrml/spec/

29 https://rml.io/yarrrml/matey/

https://rml.io/yarrrml/matey/

D2.3 - Final technical specifications and description of the integrated BIGG solution

 45

Sensitivity: Public

III.3.2.b. Core implementation
The BIGG Harmonizer components code and examples are available here:
https://github.com/biggproject/Harmonizer, An Ontop OBDA system demonstration can be
found here : https://github.com/biggproject/Harmonizer/tree/main/ontop.

The java library ‘rml.jar’ is used to process RML mapping rules on a selected dataset to
generate an RDF document. The integration of this library into a Python module allows to
experiment the harmonization of input data from multiple sources automatically.

The Python module created to harmonize input data with the BIGG ontology is composed of
two stages, the first one is related to the RML mapping file, and the second one is related to
the alignment of standards ontologies with the BIGG ontology.

The conversion step is the first stage of the Python module, it corresponds to the use of the
java library to convert an input JSON file into an RDF file thanks to the mapping rules defined
in the RML file. The module can output two serialization formats of RDF, the TTL (Turtle) or
the JSON-LD30 format.

The second stage of the Python module, corresponds to the use of SPARQL queries to add,
translate or complete the RML stage. The second stage can also be used to align data based
on standardized ontology into the BIGG compliant RDF. For instance, it allows to align data
based on standards ontologies like IFCOWL, SOSA or SAREF, with the BIGG ontology.

The execution and test of the Python module can be done in a Jupiter Notebook, with the
following command line:

For production integration, the Harmonizer can be operated as a microservice. As an input the
Harmonizer receives as a configuration a Standard Mapping Template and produces a
transformation of the original data model format into a RDF structure, which is then aligned to
the BIGG Data Model. The Harmonizer will enable the translation of the incoming messages
from the mapped data sources emitted from the Ingestors into the BIGG common message
format.

The Harmonizer will operate in the system as a microservice based on the “Processor” pattern.
It will be responsible for translating all incoming messages to a common message format so
that any other component of the system can benefit of any data message in a fast and
standardized way. The Harmonizer must be:

1. Responsive: minimizing the latency from the incoming message to the time the message
has being stored and handled by the system.

2. Maintainable and extensible: allowing to respond quickly to the market that asks for new
formats of data message to be supported by the system.

3. Efficient: engaging a minimal amount of computational resources.

4. Elastic and scalable: allowing more instances of Processor to run in the system on
different nodes to increase (possibly linearly) the throughput; making it easy to add, remove
or move instances in the system.

5. Robust: coping with errors and with erroneous inputs without compromise the operation
of the system.

Figure 25) depicts the overview of a workflow involving the Harmonizer V2 component.

30 https://json-ld.org/

https://github.com/biggproject/Harmonizer
https://github.com/biggproject/Harmonizer/tree/main/ontop

D2.3 - Final technical specifications and description of the integrated BIGG solution

 46

Sensitivity: Public

Figure 25) V2 version of the architecture of the ingestion/harmonization process

1. Custom ingestors will get connected to external participant’s sources to feed
participant’s raw data into the BIGG system.

2. The Harmonizer is triggered on a raw data ingestion event. It uses the mapping files
defined in WP4 in a generic process of converting input raw data structures into RDF
harmonized information that can be used in later processes of an implemented BIGG
components pipeline.

D2.3 - Final technical specifications and description of the integrated BIGG solution

 47

Sensitivity: Public

III.3.2.c. Architecture
The Harmonizer as sketched in Figure 26) is a micro-service cooperating with other
components of the BIGG RAF:

- Ingestor: those components are responsible for introduce the data messages into the
system, without taking care of the meaning and the format of the data. They, in a
loosely-coupled way (based on Kafka topics), are responsible to feed the Harmonizer
with data message of arbitrary format.

- Adapter and other adapters: other components that needs to receive data and they
need the data in a common format. The Harmonizer delivers data to them, in a loosely-
coupled way, based on Kafka topics.

Figure 26) Harmonizer artefact

III.3.2.d. Harmonized Message Format
The Harmonized Message Format is the format of all incoming data message. It is derived
from the Kafka record format and therefore it is compound of:

- Value
The JSON serialization of the resulting harmonized message

- Type
The type or format of the value field. It is a text string that must be enough to indicate
how to read (de-serialize and de-harmonize) the value.

- Key
For each fixed type, the key is a text string identifier of the source of the data message.
The couple (type, key) must be a universal identifier of the source of the data message.

- Metadata
Arbitrary textual information about a data message or about its source. Metadata is
structured as a collection of name-value pairs with textual names and textual values.
Names are repeatable. Examples of metadata are:

o encoding=UTF-8: indicating the encoding of the value bytes

o requestId=6651a560-da17-4807-ab4b-ebc01895f1fd: a unique id for the
data message initialized by the ingestor.

o requestTs=2019-07-08T20:01:10.804+02:00: timestamp at which the data
entered the system, initialized by the ingestor.

D2.3 - Final technical specifications and description of the integrated BIGG solution

 48

Sensitivity: Public

III.3.2.e. Database
At present day, the Harmonizer has no need of a database, thus it has no database.

III.3.2.f. Configuration
The Harmonizer must both consume and produce Kafka messages, so the YAML configuration
file must have consumer and producer configuration keys:

• consumer.bootstrap.servers (Kafka instance e.g., “localhost:9092”)

• consumer.topics (topics list or pattern e.g., “input-*”)

• producer.bootstrap.servers (Kafka instance e.g., “localhost:9092”)

• producer.topic (topic to produce to, e.g., “harmonized”)

• server path and port (e.s. “localhost:8093/api/processor”)

• logging (es. “Level: INFO”)

III.3.2.g. Implementation
The implementation of the Harmonizer is based on a simple interface named the “mapper”:

public interface Mapper<C,S> {

 public S mapFrom(C c);

 public C mapTo(S s);

}

All its implementations will be used to map from the original format to the harmonized format
and vice versa. The following class diagram depicts the main components of the
microservice:

Figure 27) Main components of a BIGG Harmonizer

D2.3 - Final technical specifications and description of the integrated BIGG solution

 49

Sensitivity: Public

- KafkaPuller
this class will consume input messages in original format and will deliver its content to
the Manager

- Manager
the manager will process the message sending its content to the right “Harmonizer”
implementation (i.e., MessageHarmonizer, MetricHarmonizer, etc.) and, once received
the corresponding harmonized message, propagating it to the “pusher”

- Harmonizer
the “Harmonizer” interface will be an extension of the “mapper” interface described
above. Every partner will develop the set of Harmonizers that will accomplish their
respective requirements handling their proprietary formats

- KafkaPusher
this class will send the harmonized messages to the proper Kafka topic to let the
“adapters” to retrieve the content

III.3.2.h. GUI
The Harmonizer does not need a GUI, thus it has none.

III.3.3. AI toolbox : Data processing/analysis components

III.3.3.a. Overview
Forecasting and predictions form the bedrock of strategic planning and decision-making across
a wide spectrum of disciplines. The emergence of Machine Learning (ML) and Artificial
Intelligence (AI) has introduced a change in basic assumptions in how we approach

forecasting, prompting a departure from conventional techniques. ML and AI tools offer
several advantages over conventional forecasting methods, making them increasingly
indispensable for solving complex forecasting problems in today's world.

ML and AI tools can:

• Uncover intricate patterns within vast and complex datasets, including non-
linear relationships that might be overlooked by conventional techniques.

• Adapt to changing circumstances and learn from new data, enabling real-time
decision-making based on up-to-date insights.

• Automate the forecasting process, reducing the need for manual intervention
and enhancing efficiency.

• Conduct multivariate analysis, effectively considering a multitude of variables
that might interact in complex ways.

The transition to ML and AI-driven forecasting is a necessity dictated by the demands
of the modern world, characterized by unprecedented complexities, data volumes, and
the rapid pace of change. By harnessing the power of ML and AI, we can unlock deeper
insights, generate more accurate predictions, and adopt a proactive approach to
decision-making.

ML and AI tools provided by BIGG AITB are essential for forecasting in today's
world because the world is more complex and data-driven than ever before.

D2.3 - Final technical specifications and description of the integrated BIGG solution

 50

Sensitivity: Public

AITB is a Python and R library that can be used to analyze building data and construct
AI models to optimize energy conservation. It is adaptable to different data formats and
structures, and can handle a wide spectrum of data types, including real-time
measurements, pulses, and index values. The AITB is designed to be used in
conjunction with the BIGG data model,31 but it can also be used independently.

The AITB is made up of function blocks, which are engineered to be versatile and
applicable to a spectrum of building-related scenarios. These function blocks are
categorized into four primary modules:

1. Data preparation modules: These modules synchronize with initial data
management stages, such as quality assessments, outlier identification, and
timestamp management.

2. Data transformation modules: These modules delve into data categorization
and secondary dataset management, involving elements like calendar and
weather data.

3. Modeling modules: These modules focus on constructing, evaluating, and
testing data models.

4. Reinforcement learning modules: These modules pertain to the creation and
training of reinforcement learning agents—a specialized facet of machine
learning.

The AITB is a powerful and flexible tool that can be used to swiftly and accurately
predict energy usage, pinpoint areas for energy savings, and optimize energy
performance in buildings. It is a significant contribution towards advancing
energy efficiency and sustainability in the building sector.

III.3.3.b. Core implementation
This section presents the data processing and analysis components created in the BIGG
project. These components are presented here but are more deeply detailed and documented
on biggproject/biggdocs GitHub.32

The BIGG GitHub has been separated in three separate sections:

1. BiggDocs: Where all the functions are defined and described in detail.

2. BiggPy:33 Where the functions are implemented in Python language.

3. BiggR:34 Where the functions are implemented in R.

The creation of these BIGG data processing and analysis components is a critical part of the
BIGG project. Defining and implementing these components is an iterative process that will
span throughout the duration of the BIGG project.

31 https://github.com/biggproject/Ontology

32 https://github.com/biggproject/biggdocs

33 https://github.com/biggproject/biggpy

34 https://github.com/biggproject/biggr

https://github.com/biggproject/biggdocs
https://github.com/biggproject/biggpy
https://github.com/biggproject/biggr

D2.3 - Final technical specifications and description of the integrated BIGG solution

 51

Sensitivity: Public

The AI Toolbox for Buildings (AITB) serves as a comprehensive resource for analyzing building
data and constructing AI models to optimize energy conservation within buildings. This toolbox
leverages the capabilities of Python and R programming languages, customized with popular
libraries like scikit-learn and Caret to meet specific usability requirements.

At its core, the AITB is designed for adaptability, capable of accommodating diverse data
formats and seamlessly navigating through harmonized data in alignment with the BIGG data
model. While it does not perform data collection, it proficiently manages various data types,
including real-time measurements, pulses, and index values — common elements in building
energy data. Importantly, each function block within the toolbox possesses standalone
functionality, independent of the BIGG data model, making it versatile and compatible with
various data sources.

Furthermore, while the toolbox's pipelines are optimized for harmonized inputs and outputs,
the foundational building blocks of these pipelines do not inherently demand such coherence.
This adaptability to different data formats positions the toolbox as a potent instrument for
effective building data management, regardless of the specific presentation.

III.3.3.c. AITB Function Blocks and Modules35
The function blocks within AITB are engineered with versatility in mind, offering applicability
across a spectrum of building-related scenarios. These function blocks are defined by their
inputs, functions, and outputs, forming the cornerstone of distinct modules. These modules are
thoughtfully categorized into module blocks, encompassing four primary classifications:

Data Preparation Modules: These function blocks synchronize with initial data management
stages, including quality assessments, outlier identification, and timestamp management :

35 biggpy/ai_toolbox at main · biggproject/biggpy · GitHub

https://github.com/biggproject/biggpy/tree/main/ai_toolbox

D2.3 - Final technical specifications and description of the integrated BIGG solution

 52

Sensitivity: Public

Table 2: Data preparation Modules, their decriptions, their availability & usage

Function Name Description Used in
Applications

(A1 to A5)

Availability

Time Stamps Alignment

detect_time_step Infers the minimum time
step from input data.

A1, A2, A3,
A4

biggr, biggpy

align_time_grid Aligns input time series
frequency with specified
aggregation.

A1, A2, A3,
A4

biggr, biggpy

clean_ts_integrate Converts cumulative or
onChange measurements
to instantaneous.

A1, A2 biggr, biggpy

Outlier Detection

detect_ts_min_max_outliers Detects outliers outside
allowed range in time
series data.

A1, A2, A5 biggr, biggpy

detect_ts_zscore_outliers Detects outliers based on
Z-score threshold in time
series.

A1, A2, A3,
A4

biggr, biggpy

detect_ts_calendar_model_outliers Detects outliers using a
calendar-based model.

A1, A2 biggr

detect_static_min_max_outliers Detects outliers in static
data (e.g., building areas).

A1, A2 biggr

detect_static_reg_exp Detects elements
satisfying specified regular
expressions.

A1, A2 biggr

detect_disruptive_period Detects disruptive periods
in consumption time
series.

A1, A2 biggr

detect_holidays_in_tertiary_buildings Detects holiday periods in
highly seasonal buildings.

A1, A2 biggr

Missing Data Management

fill_ts_na Imputes values to NA
elements in a time series.

A1, A2 biggr, biggpy

Data Transformation Modules: These function blocks delve into data categorization and
secondary dataset management, involving elements like calendar and weather data.

Modeling Modules: The focus of these function blocks revolves around constructing,
evaluating, and testing data models.

Reinforcement Learning Modules: Function blocks in this category pertain to the creation
and training of reinforcement learning agents—a specialized facet of machine learning.

D2.3 - Final technical specifications and description of the integrated BIGG solution

 53

Sensitivity: Public

Table 3: Functional blocks and descriptions of data transformation modules of AITB

Function Name Description Used in

Applications

(A1 to A5)

Availability

Profiling

clustering_dlc Clusters similar daily
load curves based on
load curves, calendar
variables, and outdoor
temperature using
spectral clustering.
Minimum frequency:
hourly.

A1, A2 biggr

classification_dlc Classifies daily load
curves based on
clustering or labeled
datasets and new
data. Minimum
frequency: hourly.

A1, A2 biggr

weekly_profile_detection Returns the weekly
profile of the input time
series.

A5 biggpy

yearly_profile_detection Returns the yearly
profile of the input time
series.

biggpy

add_weekly_profile Derives the weekly
profile of an input time
series (hourly or higher
frequency) and adds it
to the feature set. Can
enhance linear model
performance.

A3
(transformer

version)

biggpy

generate_extended_weekly_profile Derives the weekly
profile of an input time
series at hourly
frequency, repeating it
for multiple years for
prediction.

A3 biggpy

Holidays

add_holiday_component Adds a public holiday
feature based on
specified country,
province, and state to
the input feature set
within the time range
of the input time
series.

A3, A4
(transformer

version)

biggpy

Calendar

add_calendar_components Decomposes time into
various features (e.g.,
date, day of the year,
day of the week)

A1, A2, A3,
A4, A5, A6

biggr,
biggpy

D2.3 - Final technical specifications and description of the integrated BIGG solution

 54

Sensitivity: Public

considering local time
zone. Typically used
for modeling user
behavior seasonality.

trigonometric_encode_calendar_components Encodes calendar
components into sine
and cosine
trigonometric cyclic
components. Boosts
predictive capabilities
of some models.

A3, A4 biggpy

Weather

degree_days Calculates degree-
days with desired
output frequency,
considering cooling or
heating mode.

A1, A2, A3,
A4

biggr,
biggpy

degree_raw Calculates the
difference between
outdoor temperature
and a base
temperature,
irrespective of the
original data
frequency.

A1, A2 biggr

get_change_point_temperature Finds optimal change
point temperature
based on correlation
between energy
consumption and
outdoor temperature
data.

biggr

Autoregressive Processes

lag_components Shifts a set of features
in time for multi-step
predictions in
autoregressive
models.

A1, A2 biggr

lpf_ts Computes a first-order
low-pass filter for
smoothing time series
data, used for various
purposes including
simplifying modeling.

A1, A2 biggr

get_lpf_smoothing_time_scale Calculates the
smoothing time scale
parameter of the first-
order low-pass filter
over an input variable,
considering a specific
time constant in hours.

A1, A2 biggr

Fourier Series

D2.3 - Final technical specifications and description of the integrated BIGG solution

 55

Sensitivity: Public

fs_components Obtains components of
the Fourier Series in
sine-cosine form to
linearize seasonal
input time series to
some output (e.g.,
energy consumption).

A1, A2 biggr

Modeling

Model Candidates

RLS Custom model
wrapper for the R-
package caret to train
linear models using
Recursive Least
Squares method.
Time-varying
coefficients for
improved data fitting.

A1, A2 biggr

GLM Custom model
wrapper for the R-
package caret to train
Generalized Linear
Models.

A1, A2 biggr

Cross Validation

BlockingTimeSeriesSplit Special time series
partitioning for cross-
validation, generating
disjoint partitions in
each iteration.

A3 biggpy

Model Assessment

evaluate_model_cv_with_tuning Nested cross-
validation with
hyperparameter tuning
to reduce bias in
model selection and
generalization error
estimation.

A3, A4 biggpy

Model Identification

identify_best_model Generalized pipeline
for supervised learning
to find the best model
among different
families with specific
parameter grids, based
on an input time series
and scoring function.

A3, A4, A5 biggpy

Model Persistence and Prediction

serialize_model Serializes and saves a
model instance to a
specified file path and
format.

A3, A4 biggpy

D2.3 - Final technical specifications and description of the integrated BIGG solution

 56

Sensitivity: Public

III.3.3.d. BIGG sample applications
The AITB has been developed to address specific use cases within the BIGG project, each of
which is discussed next.

• Energy benchmarking of buildings (GitHub)36

This application focuses on the benchmarking and monitoring of energy consumption in
buildings. It achieves two primary goals:

First, it evaluates the energy usage of a single building by analyzing its historical consumption
and weather data, a process known as longitudinal benchmarking. This involves breaking
down total consumption into three components: baseload, heating, and cooling. These
components, combined with static building information, lead to the estimation of various Key
Performance Indicators (KPIs). These KPIs provide insights into usage patterns, costs,
savings, and emissions associated with energy consumption over time.

Second, the application compares the KPIs generated from the longitudinal benchmarking
process with those of similar buildings in terms of characteristics and weather conditions. This
comparison, referred to as cross-sectional benchmarking in literature, helps identify how a
building's energy consumption performance compares to its peers.

Thus, the application can provide valuable insights for optimizing energy usage, reducing
costs, and minimizing environmental impact. This contributes to more informed decision-
making and improved energy efficiency in buildings.

• Energy Efficiency Measures (EEM) assessment (GitHub)37

This pilot evaluates the energy, cost, and emissions savings resulting from the implementation
of specific EEMs. This assessment hinges on data-driven modeling of a building's energy
consumption, comparing consumption before and after EEM implementation. This approach
mirrors the energy benchmarking concept, constituting a longitudinal evaluation of EEM
effectiveness.

• Baseline identification for Energy Performance Contracts (GitHub)38

The aim of streamlining the Measurement and Verification (M&V) process, which is a crucial
step for Energy Service Companies (ESCOs) in managing Energy Performance Contracts
(EnPCs), is pursued by the Energy Performance Contract (EnPC) management application.
Typically, the M&V process is manually managed with Excel sheets, leading to time-consuming
and error-prone outcomes. This makes the process inefficient and labor-intensive.

To standardize the M&V process, a solution has been developed by the BIGG consortium
using the AI toolbox, with the goal of accurately and flexibly identifying baselines. The core
modules of the toolbox were employed to construct a pipeline that can adapt to the
requirements of any EnPC contract and facilitate the identification of a consumption baseline
regression model from historical data, using input data such as weather, occupancy, and
calendar information. High flexibility is provided by the developed pipeline regarding the types

36 https://github.com/biggproject/A1-Benchmarking

37 https://github.com/biggproject/A2-EEM-assessment

38 https://github.com/biggproject/A3-EPC-baseline-identification

deserialize_and_predict Deserializes a model,
applies it to input data,
and returns predicted
values as a time
series.

A1, A2, A3,
A4

biggpy

https://github.com/biggproject/A1-Benchmarking
https://github.com/biggproject/A2-EEM-assessment
https://github.com/biggproject/A3-EPC-baseline-identification
https://github.com/biggproject/A1-Benchmarking
https://github.com/biggproject/A2-EEM-assessment
https://github.com/biggproject/A3-EPC-baseline-identification

D2.3 - Final technical specifications and description of the integrated BIGG solution

 57

Sensitivity: Public

of models employed for baseline identification, allowing users to customize the resulting
models to their needs while ensuring interpretability for non-expert users. The models that are
identified can then be used as building blocks for global solutions, such as those developed
within the context of the BIGG projects, where the entire M&V process, including savings
tracking, assessment of financial benefits for both ESCOs and building owners, reporting, and
more, is managed comprehensively from start to finish.

• Occupancy pattern detection for Comfort and energy optimization (GitHub)39

Addressing the needs of both energy efficiency and occupant comfort presents a challenge for
energy experts. Existing building management systems focus on comfort but neglect the
growing demand from building owners to reduce energy expenses. Additionally, these systems
often fail to consider factors like occupancy, weather forecasts, and special events. To
overcome this, HVAC controllers need to incorporate new information sources such as weather
data and occupancy patterns to decrease energy consumption without compromising comfort.
Notably, accurately identifying occupancy patterns is crucial for determining optimal energy-
saving strategies, but manual identification can be intricate.

The AITB gives a solution designed to automatically detect occupancy patterns within
buildings. It ingests the activity of people of households via the IoT sensors and considers the
holidays. The AITB lightens the workload for energy experts while enhancing the accuracy of
collected data. As a result, this toolbox has become an indispensable asset for energy experts
striving to enhance energy efficiency and create comfortable building environments.

• Energy consumption forecasting (GitHub)40

Forecasting energy usage plays a vital role in effective energy management and planning.
Precise predictions benefit both energy providers and consumers by guiding well-informed
choices. Introducing an intelligent algorithm for energy consumption forecasting significantly
enhances forecast accuracy, fostering the growth of sustainable and cost-efficient energy
systems.

This algorithm aids energy suppliers in orchestrating production and distribution, optimizing
consumption, and preventing power outages. For energy consumers, precise predictions
enable efficient energy management, cost reduction, and leveraging off-peak periods.
Moreover, the algorithm identifies consumption trends, informing efficient energy policies and
systems that work towards a dependable and sustainable energy future. The result is a more
resilient and eco-friendly energy system.

• Gas demand response (GitHub)41

This pilot is dedicated to designing an ingenious demand response (DR) plan by tapping into
the adaptability of gas consumption in residential heating. This collaborative approach
engages customers, allowing gas providers to sidestep unwarranted expenses and diminish
CO2 emissions. The pilot’s primary goal is to hit a specific gas consumption target, effectively
fine-tuning energy efficiency, curtailing gas usage, and yielding economic savings along with
environmental advantages.

The pilot case realizes its ambition through collective management of multiple boilers,
orchestrating their gas consumption to meet the stipulated objective. In this orchestration, user
comfort remains paramount – residences must not swing to uncomfortable temperature
extremes

39 https://github.com/biggproject/A4-Occupancy-pattern-detection

40 https://github.com/biggproject/biggpy/tree/usecase14/UC14

41 https://github.com/biggproject/biggpy/tree/main/gas_demand_response

https://github.com/biggproject/A4-Occupancy-pattern-detection
https://github.com/biggproject/biggpy/tree/usecase14/UC14
https://github.com/biggproject/biggpy/tree/main/gas_demand_response
https://github.com/biggproject/A4-Occupancy-pattern-detection
https://github.com/biggproject/biggpy/tree/usecase14/UC14
https://github.com/biggproject/biggpy/tree/main/gas_demand_response

D2.3 - Final technical specifications and description of the integrated BIGG solution

 58

Sensitivity: Public

To realize this vision, a reinforcement learning (RL) approach is adopted, shaping a demand
response controller policy. This RL agent learns from historical or simulated data, discerning
optimal actions based on raw input data. The distilled policy is subsequently applied in real-
world scenarios to execute the demand response strategy. The specific actions of the policy
pivot on input data and the DR objectives, whether it involves tweaking boiler operations to
align with target gas consumption or refining energy usage in response to evolving conditions.

III.3.4. Output layer components

Regarding the RAF architecture, the output layer components are the components located at
the end BIGG processing pipelines. These components are responsible for collecting the
added-value information created by the BIGG pipelines to pass them to the end-users or
external systems.

Figure 28) Output layer consumer components positioning in the RAF architecture

The output layer components are controller type-of-components regarding the RAF
architecture. They consume high-level output messages from the message bus to process
valuable knowledge created by the BIGG system. They are then responsible for providing this

D2.3 - Final technical specifications and description of the integrated BIGG solution

 59

Sensitivity: Public

information to external systems. To achieve, they consume standard output messages from
the communication bus but need to have a custom technical implementation to process them
and expose output data in a required presentation for specific end-users or to implement the
required protocols to communicate with external systems. Some examples are provided below:

1. A custom dashboard connection can be implemented in a controller as an output of a
BIGG pipeline. Such a dashboard is custom because it has to be tailored to clients’
business cases which are very specific (e.g., Energis Cloud dashboard).

2. Some business cases implemented with the BIGG architecture can aim at controlling
buildings’ automations (e.g., triggering the change of a temperature setpoint in a room
based on an analysis performed in the BIGG toolbox). In that case, a custom controller
needs to be created to communicate with edge devices controlling building systems.

3. In some situations, customer business cases are so complex that they require to be
driven by external systems. These systems, that may be pre-existing, need to receive
information from the BIGG pipelines to manage complex scenarios where custom
dashboards are created or building devices are managed. In such case, a custom
controller must be created that captures the knowledge created by BIGG toolbox and
transfers this information to an external system, using the appropriate communication
channel.

III.3.5. Integration Layer Components

All the components described in this document need to be organised in pipelines to implement
specific big data processing scenarios tailored to the particular business cases. This section
will describe the components that can help to organise BIGG components, using state of the
art architecture patterns such as choreographed architecture or orchestrated architecture. The
first paragraph of this section will introduce some enabling components that can be used to
make the integration of other BIGG components more efficient and more versatile.

III.3.5.a. Enabler components

III.3.5.a.1. API Gateway

Figure 29) API gateway component

An API gateway is a microservice that has a simple purpose: to be aware of all other
microservices in the system and to expose all of their APIs as a unique entry point to external
calls:

D2.3 - Final technical specifications and description of the integrated BIGG solution

 60

Sensitivity: Public

An external caller could be a mobile app, a web app, an IoT device and a third-party system.
In every case, this caller will use a unique front end with a unique API call. Behind the scenes,
the API Gateway will receive this call and will use all the necessary microservices to process
it and to give a response to the caller. Through this decoupling mechanism, the API Gateway
could offer a lot of value-added services: it can, for example,

• transform the content and the protocol of the call;

• offer a security layer protecting the microservices from unauthorized calls;

• throttle the calls in case of performance degradation;

• as a single entry-point, meter the overall performance of the system;

• centralize the error handling;

• balance the load on multiple instances of the microservice to increase throughput.

The implementation of this component can be based on ZooKeeper,42 an open-source project
that ”enables highly reliable distributed coordination”. ZooKeeper is a centralized service for
maintaining configuration information, naming, providing distributed synchronization, and
providing group services. ZooKeeper allows distributed processes to coordinate with each
other through a shared hierarchical namespace of data registers (these registers are called
znodes), much like a file system. It is a necessary component for Kafka, and we can leverage
this dependency using some of its functionalities. On top of ZooKeeper, to facilitate the usage
of its API’s, a tool like Curator43 can be used. The schema in Figure 30) depicts the usage of
Curator library.

Figure 30) API gateway component technical implementation

With Curator, using ZooKeeper to store a microservice configuration within a ZNode “service
path” is very simple:

// json object mapper

// to serialize and deserialize configuration

ObjectMapper mapper = new ObjectMapper();

42 https://zookeeper.apache.org/

43 https://curator.apache.org/index.html

D2.3 - Final technical specifications and description of the integrated BIGG solution

 61

Sensitivity: Public

// instantiate and start a client pointing to ZooKeeper instance and

// with the desired retry policy

CuratorFramework curatorFramework =

CuratorFrameworkFactory.newClient("localhost:2181", new

ExponentialBackoffRetry(5000, 10, 120000));

curatorFramework.start();

// creating of a node

String node = curatorFramework

.create()

.creatingParentsIfNeeded()

.withMode(CreateMode.EPHEMERAL)

.forPath("/services/bigg/ingestor", mapper.writeValueAsBytes(<object describing

ingestor service >));

// read the array of bytes stored in path

byte[] result = curatorFramework.getData().forPath(node);

// update of a node

Stat stat=new Stat(); // storage node information

curatorFramework.getData().storingStatIn(stat).forPath(node);

stat=curatorFramework.setData().withVersion(stat.getVersion()).forPath(node,

mapper.writeValueAsBytes(<object describing ingestor service >))

// delete of a node

curatorFramework.delete().forPath(node);

As a possible microservice configuration, the following structure can be used:

public class ServiceDescriptor {

 private String name;

 private String description;

 private String host;

 private String port;

 private String apiUrl;

}

Once all the microservices are auto-registered in ZooKeeper’s ZNodes, the API Gateway can
easily retrieve their configurations and URLs:

List<String> uris = curatorFramework.getChildren().forPath("/services/bigg”);

D2.3 - Final technical specifications and description of the integrated BIGG solution

 62

Sensitivity: Public

Then, for a basic API Gateway implementation, we need to forward the external calls to the
proper pipeline of microservices.

III.3.5.a.2. Commander

Exploiting the functionalities offered by the API Gateway, the Commander will be the real
orchestrator of the BIGG platform. The main idea is the Commander will send to the API
Gateway a call organized in two parts:

• Pipeline: a list of services the API Gateway must call in the ordered sequence using
the response of the previous service as the request of the next;

• Data:the byte array that represents the serialized stream of the input for the first service
to call.

Figure 31) Commander component

In a second version could be implemented other functionalities like persisting a library of
predefined pipelines.

III.3.5.b. Components of a choreographed architecture
Just like in a ballet, where each dancer exactly knows his movements and hoto interact with
the other dancers, in a choreographed architecture each microservice knows its inputs, its
outputs and how to communicate with the other microservices to realize the business process.
Choreography is an event-driven process started by the incoming message and the pipeline is
determined by the microservices implementation and configuration (in terms of input/output
topics to consume from and produce to). Figure 32) shows the implementation of a pipeline
using proper topic names and configuring accordingly the microservices.

D2.3 - Final technical specifications and description of the integrated BIGG solution

 63

Sensitivity: Public

Figure 32) Example of a choreographed flow in the BIGG RAF

III.3.5.c. Components of an orchestrated architecture
If, on the one hand, a choreographed architecture is well suited for the “ingestion” process in
the RAF that is, by nature, event driven, on the other hand we need another approach if we
want to make the RAF usable by third-party systems or external entities like participant’s users
in a request-response fashion. In this second case, a way to dynamically define a “pipeline” of
calls and to submit this sequence to the “black-box” BIGG RAF is to be provided as well. The
diagram in Figure 33) shows the components that must be present in this scenario.

Figure 33) Example of an orchestrated flow in the BIGG RAF

D2.3 - Final technical specifications and description of the integrated BIGG solution

 64

Sensitivity: Public

IV. DEMONSTRATIONS IMPLEMENTATIONS

The goal of this section is to present the different specific architectures setups for the
different BIGG business cases with an emphasis set on the supporting services modules of
the BIGG analytics toolbox that are used withing these pilot implementations.

The goal here is to validate that the objectives of the description of work are fulfilled by the
business-cases-supporting architectures implemented in BIGG. These objectives from the
description of work include:

• 1 ([…] implement a flexible and open-source big data reference architecture[…]),

• 3 ([…]develop an open,[…]building-related data analytics toolbox […])

• 4 ([…] BIGG Data Analytics Toolbox over the BIGG Data Reference Architecture 4 Buildings
[…] supporting different multi-party business cases […])

For every BIGG business case, the flow of information among the different BIGG components
in the BIGG RAF is described demonstrating a pragmatic usage and implementation of the
BIGG assets.

IV.1. Unified big data demonstration (Catalonia
Spain)

For all Spanish Pilots related use cases the same architecture is used. This architecture is
deployed on the ENMA44 commercial big data infrastructure owned by CIMNE.

Figure 34) CIMNE ENMA big data infrastructure

The main characteristics of the ENMA infrastructure are the following:

− BIGDATA FRAMEWORK: Hadoop is the "backbone" of the whole system that can
develop scalable modules operating in a distributed way, using the Map-Reduce
paradigm. It is a Distributed File System (HDFS) where all components reside, e.g.,
HBase or Hive.

− LONG TERM STORAGE: It is a distributed and scalable database to store data without

losing access to read/write on them. HBase is a random-access database capable of

holding billions of rows with real time access.

44 https://www.beegroup-cimne.com/enma-big-data-architecture/

D2.3 - Final technical specifications and description of the integrated BIGG solution

 65

Sensitivity: Public

− FAST ACCESS STORAGE: To maintain scalability, the system is provided with a fast

access database that will provide the required information to the API and visual

interfaces.

− ANALYTICS: The analytics component is the data warehouse to bind to HBase and

NEO4J. Hive creates external tables from HBase as Storage Handler (which means

HBase holds the data) and then makes HBase tables queryable with a SQL-like syntax.

− CONTAINER EXECUTION MANAGER: Kubernetes45 is a portable, extensible, open-

source platform for managing containerized workloads and services. It is used to keep

running and orchestrate together all the required API and User Interfaces. It also

manages the execution of analytics modules and any other execution requirement in

the system. Each execution will be isolated thanks to the Docker container. Keeping

the infrastructure dependency agnostic.

The architecture, components, and pipelines designed and developed in the BIGG project
have been implemented on this infrastructure.

Description of the processes implemented for the Spanish pilot UCs

Ingestion process

In the first part of the process, we have the ingestors, which are custom-made applications to
collect information from different sources. These sources can be found in different formats
such as Excel/CSV files, REST APIs or Web forms. The ingested information is channeled
through the Kafka broker to different storage services (raw data) or preprocessing
(harmonization). Kafka is the main component in the implementation for this part of the
process.

BIGG ingestors are used for all UCs in the Spanish pilot. The implementation of the ingestors
in this pilot has been done by integrating them directly into the production code.

It is highlighted that for some sources it is necessary to launch injectors in the MapReduce
paradigm to distribute the executions due to the large amount of data and the slowness of the
API responses.

Link data and harmonization process

In cases where harmonization-pre-processing is required, the harmonization component
collects data and information from the Kafka broker and processes it. This information is
harmonized using the harmonizers proposed in BIGG; for some sources, a custom BIGG-
derived harmonizer developed by CIMNE is used.

To execute the harmonization process, a custom mapper has been created for each data
source. This mapper contains the equivalence between the data in the initial format (raw data)
and the data in the format of the BIGG model (harmonized data). The harmonization
component collects the ingested data, searches for the source mapper, and performs the
transformation of the data.

Data storage

The harmonized data is then published again in the Kafka broker and made available to the
consumer which oversees the harmonized data store. The component stores the data in the
databases according to the type of data: a Neo4j graph database for static information and an
HBase time series database for time series.

The following Figure 35) shows the process followed for the ingestion, harmonization and
storage of each data source involved in each use case.

45 https://kubernetes.io/

D2.3 - Final technical specifications and description of the integrated BIGG solution

 66

Sensitivity: Public

Figure 35) Spanish pilot unified BIGG RAF implementation overview

D2.3 - Final technical specifications and description of the integrated BIGG solution

 67

Sensitivity: Public

Analytic process

Once sufficient data has been collected and on a regular basis, the various batch analyses
are launched. The analytics component obtains the required harmonized data by reading it
directly from the databases.

Once the data has been obtained, the Analytics Toolbox provided by BIGG is run. The
analytics component generates the harmonized results in the format of the KPI extension of
the BIGG ontology and these are stored back in the database.

Finally, the visual user interfaces will fetch the information directly from the databases and
display the results.

The following Figure 36) shows a global scheme of the process followed in the Spanish pilot.

Figure 36) Spanish pilot demonstration workflow

D2.3 - Final technical specifications and description of the integrated BIGG solution

 68

Sensitivity: Public

IV.2. Building utility demonstration (Business cases
#4 and #5 in Athens)

The Energis.Cloud platform used for BC4 and BC5 is designed according to the microservice
architecture principles. Each microservice is loosely coupled with the others, so that changes
in design, implementation or behaviour applied on one would not affect the other components.

However, the microservices can communicate with each other by consuming and producing
messages through the Kafka bus, as described in the previous sections. In the “Building utility
demonstration” architecture, as depicted in Figure 37) we can distinguish different categories
of components:

• Ingestors: initiating the data collection process by interfacing directly or indirectly with
external systems. In this category, we can differentiate between solicited and
unsolicited ingestor. The first one is active and “solicits” an external system that is
exposing a service to obtain data, while the second one is passive and receives data
based on a pre-defined protocol.

• Processor: responsible for harmonizing external data to our system data model. It
transforms messages following an arbitrary format into “processed messages”,
containing measurements organized in a tabular form and complementing them with
useful metadata.

• Adapter: services that retrieve payloads from the message broker (Kafka) and store
its content on a "lakeshore" resource as a DB, a third-party system, a remote host and
so on. Optionally, this component can also “adapt” the “processed messages” to make
it comply with specific rules before sending the data to the EMS platform, e.g., convert
the time stamps of the timeseries to the local time zone.

• Speed-Layer: based on Hazelcast, which is an in-memory data grid that caches
frequently accessed information to improve the performance of the system.

• API Gateway: Intermediate layer between front end of the platform and the back end.
It intercepts all the requests from the front end or from external services and redirects
them to the corresponding service.

• Computation service: the core of Energis Cloud, responsible for performing
advanced calculations, aggregations and handling alerts and time-series granularities.

D2.3 - Final technical specifications and description of the integrated BIGG solution

 69

Sensitivity: Public

Figure 37) BC4 and BC5 High level architecture diagram

After the brief introduction to our system architecture, we can now describe how the business
cases 4 and 5 (BC4 and BC5) were implemented.

First, the initial step was to enable the data collection from our data provider. We integrated a
new connector “Yodiwo” into the “solicited-ingestor” to retrieve electricity consumption, sensor
and actuators data in a scheduled manner from the Yodiwo platform of Cordia. We also
integrated ingestion of weather data from the Weatherbit 46 service as an additional
microservice since they are a key element both for the business cases and the related AI
Toolbox pipelines.

These data were harmonized according to the Energis.Cloud data model and stored internally
using Kairos DB, which is a Java-based time series API that leverages Cassandra as its
underlying distributed database. Also, other external services can collect these data from the
platform using the APIs offered by the API Gateway. Several improvements of the
Energis.Cloud data model were necessary to comply with the BIGG RAF, in particular to add
flexibility in the way data is organized and can thereafter be used by the UI and the
Computation module, and ultimately to enable scalability of the created solutions. This was
materialized under the form of new features called asset roles and meta-metrics.47

Once data were available on Energis.Cloud, we used the features offered by the system (using
internal data quality KPIs, dashboards, alerts) to make sure that they were flowing correctly
and without interruptions. Then, to build the set of solutions required for BC4 and BC5, we:

1. Computed all the necessary KPIs: this was done thanks to Energis.Cloud’s
Computation module;

46 https://www.weatherbit.io/

47 The Asset roles and Meta-metrics concepts have been later relabeled into Metric groups and Metric
definitions, with an additional concept of Metric templates gluing the two concepts. However, for past
reference purpose, we included the original names in the text. More documentation about these
concepts can be provided on request.

D2.3 - Final technical specifications and description of the integrated BIGG solution

 70

Sensitivity: Public

2. Identified the required regression models; this was done using the BIGG AI Toolbox,
and more specifically using the pipelines described in the GitHub as Applications A3
and A4, which are further described below;

3. Integrated all these ingredients as a consistent set of dashboards and reports, all linked
to each other, which each actor can access through the Energis.Cloud UI.48

We now provide more information about the process that led to the creation of the BIGG
pipelines deployed for business case 4 and 5, respectively called Application A3 and A4 in the
GitHub repository.49

We first created a CLI python tool with configurable parameters, as described in Section II.3.1.
, to launch each pipeline as an on-demand task.

The python code retrieves the data from the Energis.Cloud platform according to the
parameters provided as input and leverages the analytic features of the AI toolbox to perform
all the operations needed to generate an ML model.

Specifically, the python tool transforms the input data into the format needed by the adopted
data science libraries, e.g., a Pandas Dataframe, performs a data quality check to ensure that
a model can be generated for the input dataset, detects and exclude outliers and finally runs
an optimizer based on the GridSearch nested cross-validation to select the best performing
pipeline between the ones pre-existing in the initial grid.

Other than the final model, also the preliminary steps that create the engineered features are
part of the optimization, meaning that also specific parameters of the final model or of the
transformers are optimized.

An example of pipeline is shown in Figure 38). Here, before training the model on the initial
dataset, several engineered features are added to the data matrix, e.g., public holidays,

heating and cooling degree days, weekly profile of the electricity consumption of the building.

Figure 38) Example of cross-validated pipeline

48 See Deliverable D6.3 for more information about the solutions created for the business cases BC4
and BC5. Note that the solution delivered for BC5 was also complemented by a Grafana dashboard
allowing to manage control actions. See Deliverable D3.2 for more information about the Energis.Cloud
UI in general.

49 See the GitHub repository of the project or Deliverable D5.2 for more information about the pipelines
of Applications A3 and A4 or about the BIGG AI Toolbox in general.

D2.3 - Final technical specifications and description of the integrated BIGG solution

 71

Sensitivity: Public

Then, the initial data are transformed using the Polynomial Features, where a new feature
matrix consisting of all polynomial combinations of the initial features with a degree of at most
the specified degree is generated.

Finally, a linear regression model is trained on the transformed data repeatedly using the Grid
Search cross-validation framework.

The resulting model is a polynomial equation that is uploaded to the Energis.Cloud platform
in a formula metric together with the associated performance indicators using the API
Gateway.

D2.3 - Final technical specifications and description of the integrated BIGG solution

 72

Sensitivity: Public

IV.3. Gas & electricity demonstration (Business case
#6 in Greece)

For business case 6, two different architectures had to be designed and implemented to
properly accommodate the needs for the two use-cases it comprises. This was due to the fact
that the two pilots were housed in two separate platforms with different prerequisites, different
requirements and specific security and data management constraints for each use-case.

Use case 14

The requirements for Use-Case's 14 platform (Electricity DR) pushed us to design a hybrid
pipeline based on the Reference Architecture described for the BIGG project. This architecture
houses several components for the BIGG Toolbox, on-site and communicated with the AI
components of the AI-toolbox through an API Service that served harmonized data to the AI
Toolbox that then proceeded to consume, process and analyse the electricity consumption
data needed to fulfil the scope of the Electricity DR.

Figure 39) UC 14 High level data architecture diagram of the solution with the corresponding
tools/resources that is used.

The electricity demand response pipeline is described in a step-by-step approach:

1. Data Acquisition and Storage:
The process begins with the collection of data from IoT devices installed in households in
Greece, which continuously transmit meter readings and smart device readings every 30
seconds. For UC14 we only focus on smart meter readings only. These readings are ingested
via Heron's database using the ingestors mentioned in Section III. The data format and
structure are detailed in Section III.3.1.c. . This telemetry data serves as the foundational
information for energy consumption analysis. To do the pre-processing and storing the meta-
data of the following steps, we use an Azure Data Lake (an component external to the RAF).
The Azure Data Lake is a deviation from RAF but provides additional flexibility of exporting
the data to 3rd party tools for doing analytics and API deployment (see step 10).

2. Pre-processing and Cleaning:
Upon data retrieval, a series of pre-processing steps are executed. This involves data clean-
up, alignment of values in time, and addressing any inconsistencies or missing data points.

D2.3 - Final technical specifications and description of the integrated BIGG solution

 73

Sensitivity: Public

The AITB modules used for this step can be found in Section III.3.3.c. . The goal is to ensure
a standardized and reliable dataset for further analysis.

3.Outlier Detection:
An essential part of the process involves the identification and handling of outliers within the
dataset. The outlier detection module, part of the AITB (See Table 2, Table 3), is employed to
recognize and manage anomalous or irregular data points that might significantly impact
forecasting accuracy.

4.Feature Engineering:
Calendar components, such as day of the week, hour of the day, and potentially other temporal
features, are extracted and integrated into the dataset. For the description of the functions,
one can consult Section III.3.3.c. . These features aim to uncover correlations between energy
consumption patterns and temporal factors, thus enhancing the accuracy of predictions.

5.Energy Profiles and Clustering:
A distinctive step in the pipeline involves the generation of energy profiles, utilizing clustering
techniques to identify similar consumption patterns among households. This “double”
clustering procedure groups households based on their energy profiles, resulting in an
encoding for each profile derived from its proximity to cluster centroids. These profiles and
associated clustering distances are integrated as additional input features for the neural
network model.

6.Machine Learning Model Training:
Multiple machine learning models (recurrent neural network, RNNs) are trained using the
prepared dataset, incorporating power consumption data, device information, calendar
components, and energy profiles. These models predict hourly energy demand for individual
households.

7.Data Augmentation for Forecasting:
To extend the forecast duration to 24-48 hours, a data augmentation technique is used.
Predictions for the next hour, along with the preceding 23 hours of data, are iteratively
employed to generate subsequent predictions. This iterative process enhances the accuracy
and extends the forecasting horizon.

8. Model Evaluation and Selection:
Following model training, an evaluation process is conducted to determine the most accurate
model for residential power consumption forecasting. This involves comparing predicted
power consumption values against actual consumption, selecting the model that provides the
most precise and reliable forecasts.

9. Tariff Integration and Cost Calculation:
Once forecasting is complete, the system incorporates the green tariff for upcoming hours to
calculate the overall cost of consumption. The green tariff is not exactly the cost of the energy
but the greenness of the energy i.e. the ratio of energy generated from renewable and non-
renewable sources throughout the day. This data is again obtained from an API provided by
Heron. This calculation accounts for the customer’s energy usage and the corresponding rates
for the given time period. This step is an addition to the RAF to attain UC14 solution
requirements.

10. Recommendation API
This step is also a deviation from RAF. However, this step needed to be incorporated so that
the providers can seamlessly integrate the output of the recommendations into their own
framework to send these recommendations to the customers. As due to GDPR requirement

D2.3 - Final technical specifications and description of the integrated BIGG solution

 74

Sensitivity: Public

only the energy providers (in this case Heron) have the confidential information of the
customers, this step was necessary to make the pipeline scalable for larger customer base.

These steps explain all the functional components of the pipeline.

Next lines will provide more detailed exploration of the API structure, as this step is pivotal in
opening the potential for integrating the end-product of the pipeline into our partner's internal
system. For this use case we have developed two sets of APIs. Below we discuss the structure
of the two APIs. This detailed examination will unravel the complex framework behind their
operational dynamics, shedding light on the precise technical components orchestrating the
smooth integration within software ecosystems.

A. Two Deployed Sets of APIs:

• First API for Next Day Recommendations:

Functionality: These API offer recommendations for the upcoming day, available a day in
advance, aiding proactive energy management.
Objective: To anticipate and provide suggestions for optimizing energy usage based on
predictive models.
Timing: Recommendations are accessible a day prior to the specified consumption day,
facilitating early access for planning.

• Second is for Historical/Archival Recommendations:

Functionality: Provides access to past recommendations that has been provided by the
pipeline.
Objective: Serves for retrospective analysis, trend identification, and understanding energy
recommendation patterns over time.

B. Priority Levels (P1 and P2):

• P1 (Priority Level 1): Represents critical recommendations, crucial for immediate
interventions or optimizations corresponding to two lowest ISP scores of hours of
renewable to non-renewable ratio.

• P2 (Priority Level 2): Offers important but less urgent recommendations compared to
P1, prioritizing less critical suggestions.

C. Priority-Based Access and Usage:

• Order of Priority: Categorization into P1 and P2 levels provides a structured hierarchy
based on urgency and importance. An SMS is sent, based on the priority level.

• Usage Scenarios: Users make decisions and allocate resources based on these
priority levels, addressing critical recommendations first. The smart devices are used
to validate if the user has followed up on the recommendation or not.

D. Implementation and Utilization:

• API Access and security: Access to the APIs, based on their requirements for energy
optimization and planning is currently anonymous. However, a user ID is required to
deploy the API from the Azure Function apps. This corresponds to a Tier 2 security
layer. Since the data is anonymized, this level of security is sufficient to comply with
the ISO 9001 protocol.

D2.3 - Final technical specifications and description of the integrated BIGG solution

 75

Sensitivity: Public

• Interpretation of Recommendations: Use recommendations for implementing
strategies, managing consumption, and planning energy optimization activities.

E. Potential Applications:

• Real-time Decision-Making: Use P1 recommendations for immediate intervention in
energy management systems.

• Long-term Planning and Analysis: Leverage both P1 and P2 recommendations for
historical analysis, long-term planning, and identifying consistent energy consumption
trends and customer behaviour.

Conclusion about UC14:
This comprehensive pipeline, provided in the repository as an OSS application,50 incorporates
AITB’s modules, from data ingestion to model training and evaluation, leveraging advanced
machine learning techniques. This system provides a versatile approach to managing energy
consumption, offering both proactive and retrospective recommendations for energy
optimization and planning. The integration of IoT data, feature engineering, clustering, and
model selection culminates in an accurate and reliable predictive model for residential power
consumption.

Use case 15

The Natural Gas DR Use-case (15) demonstrates and exploits the flexibility potential of
buildings in natural gas. The focus is on characterizing the availability and distribution of
flexible loads in the buildings by analyzing a plurality of data captured from heterogeneous
sources like devices deployed at consumer premises smart meters, heating controllers, IoT,
sensors, etc.

The whole architecture is based on microservices using Docker containers and a container
orchestrator service. The microservice architecture provides the option to include all the BIGG
components needed on-site and refrain from having to communicate through the Internet to
produce recommendations and data. To this end, all the required BIGG Components are
dockerized and deployed on a platform depicted in Figure 40).

50 https://github.com/biggproject/biggpy/tree/usecase14/UC14

https://github.com/biggproject/biggpy/tree/usecase14/UC14

D2.3 - Final technical specifications and description of the integrated BIGG solution

 76

Sensitivity: Public

Figure 40) High level Architecture diagram for Use Case 15 – Natural Gas

Notably, the architecture building blocks used for this specific use case are as follows:

• Kafka: Kafka is high performance, high-throughput distributed event store and stream-
processing platform. From the start of the BIGG Project, KAFKA was deemed as an integral
component of the whole Reference architecture it was decided to be integrated in the domX
Platform as a way of improving the performance and complying with the RAF. On top of
KAFKA we used KAFKA Connect which is a component that allows for hassle-free
integration and communication with databases and external systems.

• Ingestors: The ingestion process for the domX Platform can ingest two types of data, real-
time data that are generated from the IoT Devices used to control the heating elements in
the households, and are consumed through an MQTT Broker, and statics data that are
being handled through some HTTP APIs and are data that complement and enrich the real-
time data. (weather data, home characteristics data etc.). The BIGG Ingestor “pattern” has
been used to evolve existing domX core components that had an optimized capability of
ingesting Use-case data from MQTT, HTTP and to publish data to a Kafka component out
of the box while not requiring any modifications to be deployed and work seamlessly in
production. We modified the ingestor that we were using to connect to Kafka and to publish
the data consumed to a KAFKA topic (“bigg_input_mqtt”).

• DB Storage: The storage we are using is split into two categories. Raw data storage and
Harmonized data storage. The Raw data storage was being used in the domX platform
before the BIGG project and it relies on InfluxDB and PostgreSQL. InfluxDB is a timeseries
database that allows for the storage of datapoints that are being generated by the devices
and are subsequently ingested by the Ingestion service. PostgreSQL is used to store
Structured data that cannot be stored in a TimeSeries DB, such as building and user data
and metadata.
For the Harmonized data storage, an RDF storage platform for a variety of OSS

D2.3 - Final technical specifications and description of the integrated BIGG solution

 77

Sensitivity: Public

Implementations had to be chosen. Some of the candidates we evaluated were Neo4j,
Stardog, GraphDB, Apache Jena, RDFox, etc. We decided to use RDFox mainly because
it provided a docker container and was easy to integrate into our existing platform
architecture.

• Harmonization: Harmonizing the data to a common format is the element of success of
the BIGG Project and a pre-requisite to create common Tools for Ingesting, processing,
and analyzing the data collected. The BIGG Harmonizer is the component in the BIGG RAF
that brings the pieces of the data and the AI Toolbox together. The harmonization process
happens in real-time as soon as the data are published by the devices and ingested by the
ingestor services. To integrate the BIGG Harmonizer into domX’s Platform, we had to
dockerize the BIGG Harmonizer script, since otherwise we would not have been able to
access the measurements and data published by Kafka since they all resided inside a
Virtual Private Network that isonly accessible by container services. The dockerization
required a Python base container and we also had to include a volume with a harmonization
configuration file that was created specifically for Use Case 15 and Gas/Heating-related
data. In addition, we had to create a wrapper around the original Harmonization Script
developed in Python to stream data to it and from it using Kafka. After the harmonization
process is finished all the generated data points are published to a Kafka topic
(“bigg_harmonized”) and then are consumed by the DB Service and the AI Toolbox.

• AI Toolbox: The AI Toolbox developed in WP5 by Imec is the core component of the whole
architecture. It receives real-time data from the devices and uses a series of containers to
implement the Demand Response-Event functionality. The AI Toolbox requires roughly 1
month of historical data from each building/apartment to create a specific model. Afterwards
it requires re-training every 24-hours to provide the best possible outcome. The training
process happens by a training-container that is fired by a cron-job and requests data stored
from the DB for every household. The DR-event process happens in real time, the service
receives data from the Kafka topic and then processes and evaluates the data based on
the DR requirements set through the User Interface and the scenario (increase/decrease
consumption). Households are then graded based on their profile and the action required
by the DR Scenario. The DR Event Container then proceeds to send DR Control Outputs
directly to the devices through an HTTP API.

• User Interface: The User Interface which is used to display the control outputs produced
by the AI Toolbox is the domX smartphone app and the domX Supplier web-based
Dashboard. The smartphone application informs the user about upcoming DR Events and
provides him/her the capability to opt-in or opt-out from the specific DR Event. The Supplier
dashboard is used to monitor the entire DR Portfolio of the Supplier and can provide
valuable information to the Portfolio Manager in terms of consumption and climate on a
portfolio or device basis.

Conclusions about UC15:

The RAF pipeline was implemented successfully for the purposes of Use Case 15. DomX
managed to use or evaluate all the components developed in the scope of the BIGG Project
while also incorporating meaningful improvements. The UC-15 pipeline51 manages to provide
DR control over residential buildings for Natural Gas boilers and can demonstrate scenarios
where the AITB can control a portfolio-wide consumption increase/decrease based on the
supplier requirements.

51 https://github.com/biggproject/biggpy/tree/main/gas_demand_response

https://github.com/biggproject/biggpy/tree/main/gas_demand_response

D2.3 - Final technical specifications and description of the integrated BIGG solution

 78

Sensitivity: Public

V. CONCLUSIONS

This document has presented the technical specifications and design of the BIGG architecture
building blocks. This work has leveraged outputs of BIGG Deliverable 6.1, which studied the
pilots’ use cases from a technical perspective and emphasized the fact that a cloud-only
solution should not be the only target of a BIGG Reference Architecture. In fact, if we want the
BIGG architecture and more widely the BIGG components, to be exploited and deployed after
the project, the BIGG components integration options must be versatile.

Thus, the Big Data Reference Architecture is a blueprint for designing and implementing big
data solutions. It provides a high-level overview of the key components and processes
involved in big data management, from data collection and ingestion to processing, analysis,
and visualization. BIGG RAF is designed to be flexible and scalable, allowing organizations to
adapt them to their specific needs. The BIGG RAF is specifically designed for the building
energy domain: it provides a pipeline for collecting, harmonizing, and processing building
energy data from diverse sources. The harmonization process is enabled by the BIGG
Standard Data Model 4 Building Ontology, which provides a structured and standardized
representation of data meaning and interrelationships. The harmonized data can then be used
by the BIGG AI Toolbox to generate insights and predictions related to building energy
consumption and performance.

To provide this high-level overview, the initial section (§II) of this document has presented a
technical approach to ensure modularity and versatility of BIGG software components. It has
proposed to structure the code of the BIGG components in different layers: (1) the business
logic core, embedded in (2) an exposing interface (CLI, Web service or event messaging)
which is (3) constrained using Docker technology. The components’ code bases and
deployment artifacts need to be centralized in a repository shared among users. Every user is
then able to pull the components versions that fits the best his local architecture and update
the components for future shared improvements.

The next section (§III) has presented a Reference Architecture Framework (RAF) describing
state-of-the-art techniques to coordinate BIGG components, may the actual architecture
deployment be local (on client’s infrastructures) or in the cloud (on centralized shared
infrastructures). The RAF provides architectural workflows for collecting, harmonizing, and
processing building energy data from diverse sources. The harmonization process is enabled
by the BIGG Standard Data Model 4 Building Ontology, which provides a structured and
standardized representation of data meaning and interrelationships. The AITB leverages data
analytics and AI/ML technologies to process the harmonized data and produce insights and
predictions. The RAF enables data-driven excellence in the building energy domain,
transforming data into an asset that propels the operations of various business cases.

Finally, the last section (§IV) has presented actual RAF technical implementations on various
generic topics like Unified Big data services for ICAEN/ICAT, building utility services for
Helexia/Cordia and Gas & electricity demonstration applications for Heron. This section has
demonstrated the “pick and choose” nature of the BIGG assets and how BIGG components
were used and integrated by each solution –provider within the project to build commercial-
grade building energy solutions with BIGG OSS components.

As a final word, the BIGG RAF is an open-source framework, which means that it is freely
available for anyone to use and modify. This makes it a valuable resource for organizations
that are looking to develop their own big data solutions for the building energy domain.

D2.3 - Final technical specifications and description of the integrated BIGG solution

 79

Sensitivity: Public

